РОССИЙСКАЯ ФЕДЕРАЦИЯ

ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2550156 (13) C1
(51)  МПК

G21F1/00   (2006.01)
C03C27/00   (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: по данным на 07.05.2015 - нет данных
Пошлина:

(21), (22) Заявка: 2014122413/07, 03.06.2014

(24) Дата начала отсчета срока действия патента:
03.06.2014

Приоритет(ы):

(22) Дата подачи заявки: 03.06.2014

(45) Опубликовано: 10.05.2015

(56) Список документов, цитированных в отчете о
поиске: SU1809692 A1, 27.03.1996 . КАЗЕЕВ В.Г.и др. Термостойкий нейтронозащитный материал. Науч. сесс. НИЯУ МИФИ-2013. Сборник научных трудов. Третье зас. тем. секц. по напр. "Инновационные ядерные технологии"; 4-6.02. 2013, Снежинск. Москва, НИЯУ МИФИ, 2013, с. 14-15. US20070102672 A1, 10.05.2007 . US7550645 B2, 23.06.2009 . WO1998012711 A1, 26.03.1998

Адрес для переписки:
119991, Москва, ГСП-1, Ленинский пр-кт, 31, Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова РАН

(72) Автор(ы):
Гоева Людмила Викторовна (RU),
Малинина Елена Анатольевна (RU),
Авдеева Варвара Владимировна (RU),
Кузнецов Николай Тимофеевич (RU),
Скачкова Вера Константиновна (RU),
Шаулов Александр Юханович (RU),
Грачев Андрей Владимирович (RU),
Берлин Александр Александрович (RU)

(73) Патентообладатель(и):
Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) (RU)

(54) БОРСОДЕРЖАЩИЙ НЕЙТРОНОЗАЩИТНЫЙ МАТЕРИАЛ

(57) Реферат:

Изобретение относится к нейтронозащитным материалам и может быть использовано, в частности, при капсулировании радиоактивных отходов, при создании защитных щитов. Борсодержащий материал с деформационной устойчивостью L/L0=3,0÷7,5% при 600°С получают взаимодействием силиката натрия Na2O(SiO2)n в водном растворе едкого натра с декагидро-клозодекаборатом триметиламмония (Me3NH)2B10H10. Реакционный раствор кипятят до полного удаления триметиламина, образующегося в результате взаимодействия раствора едкого натра с (Me3 NH)2B10H10, затем сушат, поднимая температуру вплоть до 300°С, получают материал, отвечающий брутто-формуле: [Na2O(SiO2)n]m[Na2 B10H10]k, где: n - характеристика исходного силиката натрия через силикатный модуль, который варьируется в пределах 2,5÷3,0; m:k=7,0÷1,9, при этом связывание декагидро-клозодекаборатного аниона с атомами натрия как силиката натрия, так и едкого натра происходит за счет многоцентровых взаимодействий с образованием пространственных супрамолекулярных структур. Технический результат - получение нейтронозащитного материала без высоких энергозатрат и дополнительного оборудования. 1 табл.

Изобретение относится к области разработки теплостойкого неорганического борсодержащего материала, обладающего деформационной устойчивостью до 600°С, который может быть использован в народном хозяйстве и атомной промышленности. Сочетание высокой теплостойкости и способности бора поглощать тепловые нейтроны может быть востребовано при капсулировании радиоактивных отходов, а также в качестве защитных щитов, элементов одежды, удовлетворяющих требованиям охраны труда и в техногенных ситуациях.

Известен композиционный материал [RU 2278177], содержащий матрицу на основе металла или сплава и соединение бора в качестве наполнителя, при этом соединение бора содержит тетрагидро- или тетрагалогенборатный анион KatBX4, где Kat - катион металла или ониевый катион, В - бор, X - водород или галоген, при этом содержание соединения бора в матрице составляет 15÷50 об.%.

К недостаткам материала относится то, что агрегатное состояние данной композиции не позволяет ее использование для нейтронной защиты.

Еще одним недостатком материала является относительно низкая его теплостойкость, обусловленная наличием в матрице композита наполнителя, способного разлагаться в присутствии алюминиевого или магниевого сплавов, которые в свою очередь проявляют каталитическую активность при повышенных температурах.

Известен также нейтронозащитный материал [SU 1809692], состоящий из нитрида бора, дополнительно содержащий бор (1÷10 мас. %) и оксид магния (1÷10,2 мас. %). Материал имеет достаточно высокую теплопроводность после облучения при 600°С и предел прочности на изгиб 4,8÷9,7 кг/мм2.

К недостаткам материала относится многостадийность процесса получения вышеуказанного материала, сопровождающаяся высокими энергозатратами: перемешивание компонентов в течение 5 ч до получения однородной смеси, их формовку под давлением 300 кг/см2, собственно отжиг в атмосфере азота под давлением 1000 атм, причем инициирование реакции горения проводят нагреваемой вольфрамовой спиралью.

Вторым существенным недостатком является сложность аппаратурного оформления процесса.

Наиболее близким техническим решением является нейтронозащитный материал [SU 1804228] (прототип), содержащий химически связанный бор и, по меньшей мере, один тугоплавкий оксид. Особенностью материала является наличие в нем бора в виде нитрида и полиборида магния при следующем соотношении компонентов, мас. %: полиборид магния 5÷25, тугоплавкий оксид 10,5÷30, нитрид бора - остальное.

Материал по прототипу обладает радиационно-термической стойкостью в интервале температур 100÷600°С, при температуре 600°С относительное изменение геометрических размеров материала после облучения минимально.

Недостатком материала по прототипу является то, что достижение радиационно-термической стойкости материала обусловлено использованием в составе нитрида бора, который в свою очередь представляет собой тугоплавкое соединение с температурой плавления 2700°С, использование которого в производстве нейтронозащитного материала требует высоких энергетических затрат.

Неудачным является и выбор полиборида магния для насыщения материала по бору. Уменьшение его содержания в материале ниже заявленного снижает термическую стойкость материала, а повышение делает материал хрупким.

Изобретение направлено на изыскание борсодержащего нейтронозащитного материала, обладающего высокими эксплуатационными характеристиками, получение которого не требует высоких энергозатрат и дополнительного оборудования.

Технический результат достигается тем, что предложен борсодержащий нейтронозащитный материал, характеризующийся деформационной устойчивостью L/L0=3,0÷7,5% при 600°С, который получают взаимодействием силиката натрия Na2O(SiO2 )n в водном растворе едкого натра с декагидро-клозодекаборатом триметиламмония (Me3NH)2B10H 10, реакционный раствор кипятят до полного удаления триметиламина, образующегося в результате взаимодействия раствора едкого натра с (Me3NH)2B10H10, затем сушат, поднимая температуру вплоть до 300°С, получают материал, отвечающий брутто-формуле:

где n - характеристика исходного силиката натрия через силикатный модуль, который варьируется в пределах 2,5÷3,0;

m:k=7,0÷1,9,

при этом связывание декагидро-клозо-декаборатного аниона с атомами натрия как силиката натрия, так и едкого натра происходит за счет многоцентровых взаимодействий с образованием пространственных супрамолекулярных структур.

Соотношение m:k выбирают исходя из того, что при значениях выше 7,0 взаимодействие силиката натрия Na2O(SiO2)n в водном растворе едкого натра с декагидро-клозо-декаборатом триметиламмония (Me3NH)2B10H10 не приводит к многоцентровым взаимодействиям с образованием пространственных супрамолекулярных структур, а в случае m:k ниже 1,5 указанное взаимодействие проходит с дефицитом щелочи, необходимой для удаления триметиламмониевого катиона, присутствие которого, в свою очередь, снижает термическую стабильность материала.

Величину силикатного модуля выбирают исходя из того, что при значениях ниже 2,5 количество образующихся супрамолекулярных структур не достаточно для обеспечения жесткости материала, а при значениях свыше 3,0 наблюдается полимеризация жидкого стекла (ЖС) с образованием твердой фазы.

Полное удаление триметиламина на стадии кипячения контролируют по исчезновению в ИК-спектрах раствора полосы валентных колебаний NH-групп.

Температура сушки определяется условиями полного завершения процесса поликонденсации силиката натрия, которая зависит от соотношения исходных компонентов в материале и обычно не превышает 300°С. Завершению процесса поликонденсации соответствует отсутствие потери массы на кривых термо-гравиметрического анализа.

Выбранные реагенты, их концентрации, растворители и соотношения обеспечивают образование гомогенных систем, в которых проходят реакции внедрения и поликонденсации, приводящие к образованию максимально однородных гелей, где молекулы аниона В10H10 2- и фрагменты цепи жидкого стекла с силоксановыми связями распределены наиболее равномерно, что приводит к достижению технического результата. Выбор силиката натрия Na2 O(SiO2)n из ряда силикатов: кристаллогидраты олигомерных силикатов натрия; кристаллогидраты ортосиликатов натрия всех степеней замещения 4-х основной кремневой кислоты; поликремниевые производные силикатов натрия осуществлен из вышеприведенных соображений.

Сущность изобретения заключается в том, что при взаимодействии силиката натрия Na2O(SiO 2)n в водном растворе едкого натра (жидкое стекло) с декагидро-клозо-декаборатом триметиламмония (Me3 NH)2B10H10 наблюдается образование многоцентровых взаимодействий, формирующих пространственно-супрамолекулярные структуры. В состав материала входит термически устойчивая кластерная система - анион В10Н10 2-. Благодаря многочисленным супрамолекулярным контактам, возникающим в структуре стекла, разрушение аниона В10Н10 2- не наблюдается вплоть до 600°С. Кроме того, содержание бора в продукте от 15 до 40 мас. % обеспечивает высокую способность материала к захвату тепловых нейтронов.

Второй особенностью вышеуказанного взаимодействия является то, что в процессе образования пространственно-супрамолекулярных структур участвуют атомы натрия как силиката натрия, так и едкого натра.

Достижение заявленного технического результата подтверждается следующим примером. Пример иллюстрирует, но не ограничивает предложенное техническое решение.

Пример. В водном растворе едкого натра и силиката натрия Na 2O(SiO2)n (ЖС) на воздухе при комнатной температуре растворяли (Me3NH)2B10 H10; соотношение ЖС: (Me3NH)2 B10H10 составило 60/40 мас. %. Раствор кипятили и контролировали удаление триметиламина по исчезновению в ИК-спектрах полосы валентных колебаний NH-групп при 3100 см -1, после чего раствор сушили до прекращения потери массы на кривых термо-гравиметрического анализа, поднимая температуру до 300°С.

Аналогичным образом получали материал при исходном соотношении ЖС: (Me3NH)2B 10H10, равном 85:15, 70:30, 50:50, 40:60 и 26:74 мас. %.

Характеристики полученных материалов сведены в Таблицу: «Химические и термомеханические свойства нейтронозащитного борсодержащего материала»

Таблица.
Соотношения m:k в материале [Na2O(SiO2) n]m [Na2B10H10 ]k, при n=2,8Исходное соотношение ЖС: (Me3NH)2B10H 10Содержание бора в материале мас. %Деформационная устойчивость при различных температурах °С L/L0 (%)
200 300400 500600
15,785:157 3,010,7 11,913,0образец разрушен
6,7 70:30150,5 0,10,6 0,53,0
4,060:4021 0,31,5 1,72,66,2
2,750:50 291,0 1,51,62,6 7,0
1,9 40:6040 1,62,03,0 3,27,5
1,426:74 436,012,1 13,213,5 15,6

Как видно из представленной таблицы, технический результат не достигается за пределами заявленных соотношений m:k=7,0÷1,9, т.е. при исходных соотношениях ЖС: (Me3NH)2B10H10 , равных 85:15 и 26:74 мас. %.

Изобретение позволяет получать борсодержащий нейтронозащитный материал, обладающий высокими эксплуатационными характеристиками, получение которого не требует высоких энергозатрат и дополнительного оборудования.


Формула изобретения

Борсодержащий нейтронозащитный материал, характеризующийся деформационной устойчивостью L/L0=3,0÷7,5% при 600°С, который получают взаимодействием силиката натрия Na2O(SiO2 )n в водном растворе едкого натра с декагидро-клозо-декаборатом триметиламмония (Me3NH)2B10H 10, реакционный раствор кипятят до полного удаления триметиламина, образующегося в результате взаимодействия раствора едкого натра с (Me3NH)2B10H10, затем сушат, поднимая температуру вплоть до 300°С, получают материал, отвечающий брутто-формуле:



где n - характеристика исходного силиката натрия через силикатный модуль, который варьируется в пределах 2,5÷3,0;

m:k=7,0÷1,9,

при этом связывание декагидро-клозо-декаборатного аниона с атомами натрия как силиката натрия, так и едкого натра происходит за счет многоцентровых взаимодействий с образованием пространственных супрамолекулярных структур.