3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

3.1 Синтез и строение гомо- и гетерометаллических координационных соединений железа(III) с анионами малоновой, диметилмалоновой и этилмалоновой кислот

Взаимодействие водных растворов хлорида железа(III) и рубидиевой или цезиевой соли малоновой кислоты в мольном соотношении Fe : $M^{I}_{2}Mal = 1 : 3$ ($M^{I}_{2}Mal$, где $M^{I} = Rb$ или Cs – здесь и далее условное обозначение продукта взаимодействия карбоната соответствующего щелочного металла и малоновой кислоты) приводит к образованию изоструктурных гетеробиметаллических соединений 3D-полимерного строения $[Rb_3Fe(H_2O)(Mal)_3]_n$ (1.2) и $[Cs_3Fe(H_2O)(Mal)_3]_n$ (2.2) (схема 1.3, рис. 1.3 а, б). В обоих соединениях анионы малоновой кислоты с атомами железа(III) образуют трисхелатные фрагменты {Fe(Mal)₃}³⁻ (диапазоны длин связей приведены в таблице 1.3), которые, в свою очередь, связываются между собой при помощи атомов рубидия или цезия, соответственно (рис. 1.3 в). Анализ длин связей Fe–O в рамках метода валентных связей [86] указывает на трехвалентное состояние ионов железа в комплексах 1.2 и 2.2 и других соединениях, описанных ниже (см. Приложение А). Также отметим, что значения длин связей Fe–O меньше суммы ковалентных радиусов (2.09 Å) соответствующих элементов $(r_{\text{ков}}(\text{Fe}^{\text{III}}) = 1.36 \text{ Å}, r_{\text{ков}}(\text{O}) = 0.73 \text{ Å} [87]),$ что указывает на ковалентный тип связывания.

FeCl₃·6H₂O + 3M¹₂Mal
$$\longrightarrow$$
 [M¹₃Fe(H₂O)(Mal)₃]_n
H₂O M¹ = Rb (1.2); Cs (2.2)

Схема 1.3 – Получение соединений 1.2 и 2.2

Связь/расстояние	Длина связи/расстояние, Å			
	1.2	2.2	3.2	
Fe-O(Mal ²⁻)	1.981(5) - 2.022(5)	1.980(2) - 2.031(2)	1.968(2) - 2.024(2)	
M^{I} –O(H ₂ O)	3.188(8) - 3.239(8)	3.294(4) - 3.319(4)	_	
M ^I -O(Mal ²⁻)	2.930(5) - 3.287(5)	3.089(3) - 3.439(2)	_	
Fe····Fe	7.0702(17)	7.1326(7)	6.4615(6)	

Таблица 1.3 – Основные длины связей соединений 1.2–3.2

Рисунок 1.3 – Мономерные фрагменты 1.2 (а), 2.2 (б) и фрагмент упаковки 1.2 (в) (атомы водорода не показаны)

Было обнаружено, что введение в реакционную смесь, содержащую ионы железа(III) и малонат-анионы, катионов аммония или четвертичных аммониевых оснований может приводить к образованию ионных соединений. Так, при взаимодействии водных растворов хлорида железа(III) и малоната аммония (полученного при взаимодействии гидрокарбоната аммония и малоновой кислоты) в мольном

81

соотношении Fe : $(NH_4)_2Mal = 1 : 3$ образуется ионное соединение $(NH_4)_4[Fe(Mal)_3]Cl \cdot H_2O$ (**3.2**) (схема 2.3, рис. 2.3). В **3.2** дианионы малоновой кислоты образуют с атомами железа(III) трисхелатные анионы $[Fe(Mal)_3]^{3-}$ (таблица 1.3). В кристаллической ячейке на один анион $[Fe(Mal)_3]^{3-}$ приходится четыре катиона аммония, хлорид-анион и сольватная молекула воды (рис. 2.3).

Схема 2.3 – Получение соединений 3.2 и 4.2

Рисунок 2.3 – Строение соединения (NH₄)₄[Fe(Mal)₃]Cl·H₂O (3.2) (атомы водорода показаны частично)

Применение в качестве основания гидроксида тетраэтиламмония вместо гидрокарбоната аммония (с сохранением мольного соотношения реагентов) приводит к образованию ионного соединения (NEt₄)[Fe(H₂O)₂(Mal)₂] (**4.2**) (схема 3.3, рис. 3.3). В отличие от **3.2**, в **4.2** дианионы малоновой кислоты образуют с атомами железа(III) бисхелатные фрагменты [Fe(H₂O)₂(Mal)₂]⁻. В координационном окружении атома

железа(III) находится шесть атомов кислорода, из которых четыре принадлежат малонатанионам и оставшиеся два – координированным молекулам воды (длины связей приведены в таблице 2.3) (рис. 3.3). В кристаллической упаковке **4.2** анионные фрагменты связываются между собой при помощи водородных связей между атомами кислорода карбоксилатных групп и молекулами воды соседних фрагментов, образуя «слои» (рис. 4.3, а). Расстояния Fe…Fe в слое эквивалентны и равны 7.1985(2) Å. Катионы тетраэтиламмония, располагающиеся между «анионных слоев» (рис. 4.3, б), связаны с ними и между собой при помощи водородных связей и слабых взаимодействий типа C– H…H–C.

Рисунок 3.3 – Строение соединения (NEt₄)[Fe(H₂O)₂(Mal)₂] (4.2) (атомы водорода показаны частично)

Рисунок 4.3 – «Анионный слой» (а) и фрагмент кристаллической упаковки (б) 4.2

Применение натриевой соли вместо тетраэтиламмониевой, а также добавление метанольного раствора полученного *in situ* комплекса [Cu(bipy)₂Cl]Cl [88] в мольном соотношении Fe : Na₂Mal : Cu = 1 : 3 : 1 приводит к образованию ионного соединения [Cu(bipy)₂Cl][Fe(H₂O)₂(Mal)₂]·H₂O (**5.2**) (схема 3.3, рис. 5.3).

Схема 3.3 – Получение соединения 5.2

Рисунок 5.3 – Строение соединения [Cu(bipy)₂Cl][Fe(H₂O)₂(Mal)₂]·H₂O (5.2) (атомы водорода показаны частично)

Таблица 2.3 – Основные длини	ы связей соединен	ий 4.2	и 5.2
------------------------------	-------------------	--------	-------

	Длина связи/расстояние, Å		
Связь/расстояние	4.2	5.2	
Fe–O(H ₂ O)	2.0391(14)	2.0304(13) - 2.0542(12)	
Fe–O(Mal ^{2–})	1.9706(10)	1.9643(12) - 1.9806(12)	
Cu–N	_	1.9882(14) - 2.0693(15)	
Cu–Cl	_	2.3622(5)	
Fe····Fe	7.1985(2)	7.0963(3)	

Строение комплексных анионов в **5.2** идентично **4.2** (таблица 2.3; рис. 6.3, а). В катионе [Cu(bipy)₂Cl]⁺ атом меди(II) находится в координационном окружении близком к тригональной бипирамиде и образованном четырьмя атомами азота двух бидентатно

координированных N-донорных лигандов bipy и одним атомом хлора (диапазоны длин соответствующих связей приведены в таблице 2.3). Комплексные катионы [Cu(bipy)₂Cl]⁺ связываются между собой посредством $\pi \cdots \pi$ -стекинговых взаимодействий (расстояния $Cg \cdots Cg$ составляют 3.5368(1)–3.6378(2) Å), образуя «катионные слои» (рис. 6.3, б). Минимальные расстояния Cu···Cu, Cu···Fe и Fe····Fe равны 7.0969(4), 7.7966(3), 7.0969(3) Å, соответственно. Сольватные молекулы воды удерживаются между слоями при помощи водородных связей с атомами хлора катионных фрагментов и атомами кислорода карбоксилатных групп анионных фрагментов (рис. 6.3, в).

Рисунок 6.3 – «Анионный слой» (а), «катионный слой» (б) и фрагмент упаковки (с) соединения 5.2 (водородные связи показаны синими прерывистыми линиями, $\pi \cdots \pi$ -стекинговые взаимодействия условно обозначены прерывистыми фиолетовыми линиями)

Взаимодействие водных растворов хлорида железа(III), малоната аммония (полученного при взаимодействии гидрокарбоната аммония и малоновой кислоты) и хлорида стронция или бария в мольном соотношении Fe : $(NH_4)_2Mal : M^{II} = 1 : 3 : 1 (M^{II} = Sr, Ba)$ приводит к образованию гетеробиметаллических соединений 2D-полимерного строения { $(NH_4)[SrFe(H_2O)_5(Mal)_3] \cdot 2H_2O_n$ (6.2) и { $(NH_4)[BaFe(H_2O)_5(Mal)_3] \cdot H_2O_n$ (7.2) (схема 4.3, рис. 7.3).

FeCl₃·6H₂O + 3(NH₄)₂Mal + M^{II}Cl₂ \longrightarrow {(NH₄)[M^{II}Fe(H₂O)₅(Mal)₃]·mH₂O}_n H₂O M^{II} = Sr (6, 55%); Ba (7, 48%) Схема 4.3 – Получение соединений 6.2 и 7.2

В 6.2 и 7.2 анионы малоновой кислоты с атомами железа(III) образуют трисхелатные фрагменты {Fe(Mal)₃}³⁻, идентичные присутствующим в **1.2** и **2.2**. Фрагменты ${Fe(Mal)_3}^{3-}$, связываются в слои при помощи атомов стронция (для 6.2) или бария (для 7.2) (длины связей приведены в таблице 3.3). Катионы аммония располагаются между слоями, которые удерживаются между собой при помощи водородных связей кислорода карбоксилатных молекулами между атомами групп И волы. координированных к щелочноземельным металлам (рис. 7.3 а, б). Минимальные межатомные расстояния Fe···Fe равны 8.0753(8) и 7.8647(5) Å для 6.2 и 7.2 соответственно.

a

Рисунок 7.3 – Фрагмент (а) и слой (б) соединения 7.2 (атомы водорода не показаны для б)

Связь/расстояние	Длина связи/расстояние, Å		
	6.2	7.2	
Fe–O(Mal ^{2–})	1.976(2) - 2.0146(19)	1.9768(17) - 2.0164(17)	
M^{II} –O(H ₂ O)	2.553(2) - 2.631(2)	2.7259(14) - 2.8841(14)	
M ^{II} –O(Mal ^{2–})	2.541(2) - 2.607(2)	2.7222(18) - 2.9029(16)	
Fe…Fe	8.0753(8)	7.8647(5)	

Таблица 3.3 – Основные длины связей соединений 6.2 и 7.2

$\begin{aligned} & \mathsf{FeCl}_3 \cdot 6\mathsf{H}_2\mathsf{O} + 3\mathsf{M}^{\mathsf{I}}_2\mathsf{Mal} + \mathsf{M}^{\mathsf{II}}\mathsf{Cl}_2 & \longrightarrow & \{[\mathsf{M}^{\mathsf{I}}\mathsf{M}^{\mathsf{II}}\mathsf{Fe}(\mathsf{H}_2\mathsf{O})_k(\mathsf{Mal})_3] \cdot \mathsf{mH}_2\mathsf{O}\}_n \\ & \mathsf{M}^{\mathsf{I}} = \mathsf{K}, \, \mathsf{Rb}, \, \mathsf{Cs}; \, \mathsf{M}^{\mathsf{II}} = \mathsf{Sr}, \, \mathsf{Ba} & & \mathsf{8.2-13.2} \ (25-51\%) \end{aligned}$

Схема 5.3 – Получение соединений $\{[M^{II}Fe(H_2O)_k(Mal)_3] \cdot mH_2O\}_n$ (8.2–13.2)

При изучении возможности комбинировать в структуре малонатных комплексов железа(III) атомы двух разных *s*-металлов была получена серия соединений, включающих в себя атомы щелочных и щелочноземельных элементов. Так, в результате реакции водных растворов FeCl₃·6H₂O, M¹₂Mal и M^{II}Cl₂ (M^I = K, Rb, Cs; M^{II} = Sr, Ba) в мольном соотношении 1 : 3 : 1 было получено шесть гетеротриметаллических соединений 3D-полимерного строения с общей формулой {[M^IM^{II}Fe(H₂O)_k(Mal)₃]·mH₂O}_n (8.2 (M^I = K, M^{II} = Sr), 9.2 (M^I = K, M^{II} = Ba), 10.2 (M^I = Rb, M^{II} = Sr), 11.2 (M^I = Rb, M^{II} = Ba), 12.2 (M^I = Cs, M^{II} = Sr), 13.2 (M^I = Cs, M^{II} = Ba); схема 5.3). В 8.2–13.2 анионы малоновой кислоты с атомами железа(III) образуют трисхелатные фрагменты, подобные 1.2, 2.2, 6.2 и 7.2, которые связываются между собой при помощи атомов щелочных и щелочноземельных металлов в каркасный полимер (рис. 8.3 a, б). Основные длины связей и минимальные межатомные расстояния Fe···Fe приведены в таблице 4.3.

Рисунок 8.3 – Фрагмент (а) и слой (б) соединения 10.2 (сольватные молекулы воды не показаны)

Взаимодействие водного раствора нитрата железа(III) и суспензии малоната стронция (полученного при взаимодействии гидроксида стронция и малоновой кислоты; соединение ограниченно растворимо в воде) в мольном соотношении Fe : Sr(Mal) = 1 : 3 приводит к образованию соединения { $[Sr_2Fe_2(H_2O)_{18}(OH)_2(Mal)_4] \cdot 4H_2O_n$ (14.2, схема 6.3).

89

Соединение 14.2 значительно отличается по своему строению от ранее описанных гетерометаллических малонатных комплексов железа(III) с атомами щелочных металлов или комбинации щелочные+щелочноземельные металлы (1.2, 2.2, 6.2–13.2). В 14.2 анионы малоновой кислоты образуют с атомами железа(III) бисхелатные фрагменты, которые в свою очередь связываются попарно при помощи двух гидроксогрупп с образованием биядерных тетраанионных фрагментов ${Fe_2(OH)_2(Mal)_4}^4$ (рис. 9.3 а) (расстояние Fe···Fe во фрагментах составляет 3.0803(8) Å). Биядерные фрагменты связываются между собой парами атомов стронция, образуя бесконечные цепочки (таблица 5.3, рис 9.3 б, в).

Рисунок 9.3 – Биядерный тетраанион {Fe₂(OH)₂(Mal)₄}^{4–} (**a**), мономерный фрагмент (**б**) и фрагмент цепочки (**в**) соединения 14.2 (атомы водорода малонат-анионов и молекул воды показаны частично, сольватные молекулы воды не показаны)

Таблица 5.3 –	Основные длины	связей соединений	й 14.2	2и1	15.	2
---------------	----------------	-------------------	---------------	-----	-----	---

	Длина связи/расстояние, Å			
Связь/расстояние	14.2	15.2		
Fe–O(OH)	1.988(2) - 1.998(2)	1.992(3) - 2.008(3)		
Fe–O(Mal ^{2–})	1.978(2) - 2.030(2)	1.987(3) - 2.016(3)		
M^{II} – $O(H_2O)$	2.530(2) - 2.698(2)	2.820(3) - 3.047(3)		
M ^{II} –O(Mal ^{2–})	2.567(2) - 2.776(2)	2.767(3) - 3.067(3)		
Fe····Fe	3.0803(8)	3.0733(13)		

Замена малоната стронция на малонат бария с сохранением условий реакции получения **14.2** приводит к образованию соединения { $[Ba_2Fe_2(H_2O)_6(OH)_2(Mal)_4] \cdot 4H_2O$ }_n **15.2** (схема 6.3). В его структуре также присутствуют биядерные тетраанионные фрагменты { $Fe_2(OH)_2(Mal)_4$ }⁴⁻ ($d_{min}(Fe\cdots Fe$) = 3.0733(13) Å) (рис. 10.3 а), однако при помощи атомов бария они связываются в слои (таблица 5.3, рис. 10.3 б, в).

Рисунок 10.3 – Биядерный тетраанион {Fe₂(OH)₂(Mal)₄}^{4–} (**a**), мономерный фрагмент (**б**) и фрагмент слоя (**в**) соединения 15.2 (атомы водорода малонат-анионов и молекул воды показаны частично, сольватные молекулы воды не показаны)

Было изучено взаимодействие катионов железа(III) с малонат-анионами в присутствии катионов редкоземельных металлов (P3M). Так, в реакции Fe(NO₃)₃·9H₂O, (NH₄)₂Mal и Ln(NO₃)₃·6H₂O (Ln = La или Pr) были получены два координационных соединения 3D-полимерного строения {[LaFe(H₂O)₃(Mal)₃]·3.25H₂O}_n (**16.2**) и {[Pr₃Fe(H₂O)₁₀(Mal)₆]·6.5H₂O}_n (**17.2**) (схема 7.3, рис. 11.3), состав и строение которых отличаются друг от друга. Стоит отметить, что введение в реакционную смесь катионов других редкоземельных металлов (Nd, Sm–Lu) приводило к образованию известных гомометаллических малонатных комплексов P3M [89, 90].

Рисунок 11.3 – Мономерные фрагменты соединений 16.2 (а) и 17.2 (б) (атомы водорода показаны частично)

Общей чертой 16.2 и 17.2 является наличие в их структуре трисхелатных фрагментов ${Fe(Mal)_3}^{3-}$, идентичных для соединений, описанных выше (таблица 6.3). Связывание трисхелатных фрагментов в кристалле происходит различным образом. В 16.2 фрагменты ${Fe(Mal)_3}^{3-}$ связаны с атомами лантана(III) через карбоксилатные группы, (рис 12.3 а) в результате чего фрагмент ${La(H_2O)_3}^{3+}$ окружен шестью

фрагментами {Fe(Mal)₃}³⁻ и каждый фрагмент {Fe(Mal)₃}³⁻ связан с шестью фрагментами {La(H₂O)₃}³⁺. В **17.2** три атома празеодима занимают три неэквивалентные позиции и образуют полимерную цепочку за счет координации хелатно-мостикового дианиона малоновой кислоты (рис. 12.3, б). Эти цепочки связаны между собой фрагментами {Fe(Mal)₃}³⁻ в трехмерную структуру.

Рисунок 12.3 – Фрагменты каркасных соединений 16.2 (а) и 17.2 (б) (атомы водорода не показаны)

Связь/расстояние	Длина связи/расстояние, Å		
	16.2	17.2	
Fe–O(Mal ^{2–})	1.9684(19) - 1.9933(19)	1.974(2) - 2.027(2)	
Ln–O(H ₂ O)	2.5704(19) - 2.6177(19)	2.434(2) - 2.603(2)	
Ln–O(Mal ^{2–})	2.4567(18) - 2.6489(19)	2.436(2) - 2.648(2)	
Fe····Fe	8.2497(9)	8.7531(9)	

Таблица 6.3 – Основные длины связей соединений 16.2 и 17.2

Как было упомянуто ранее, взаимодействие ионов железа(III) с малонат-анионами в присутствии катионов аммония или четвертичных аммониевых оснований может приводить к образованию ионных соединений. Подобный результат был получен и при изучении взаимодействия ионов железа(III) с диметилмалонат-анионами (Me₂Mal^{2–}) в присутствии N-гетероциклического основания. В реакции водных растворов сульфата железа(III), диметилмалоната бария, диметилмалоновой кислоты и 4-((4,5-дигидро-3*H*пиррол-3-илиден)метилфенола (p-OH-Bp, рис. 13.3 а) в стехиометрическом соотношении 1:3:3:3 с последующим медленным упариванием было получено соединение (p-OH-BpH)₃[Fe(Me₂Mal)₃]·2H₂O (**18.2**) (схема 8.3).

+ 6(p-OH-Bp)
Fe₂(SO₄)₃·9H₂O + 3Ba(Me₂Mal) + 3H₂Me₂Mal
$$\longrightarrow$$
 (p-OH-BpH)₃[Fe(Me₂Mal)₃]·2H₂O
H₂O 18.2; 44%
Схема 8.3 – Получение соединения 18.2

В 18.2 анионы диметилмалоновой кислоты образуют с атомами железа(III) трисхелатные анионные фрагменты $[Fe(Me_2Mal)_3]^{3-}$ (Fe–O(Me₂Mal²⁻) 1.961(4) – 2.009(5) Å), строение которых идентично ранее описанным трисхелатным фрагментам с незамещенной малоновой кислотой {Fe(Mal)_3}³⁻ (рис. 13.3 б). В качестве катиона в ионном соединении выступает основание p-OH-BpH⁺ (рис. 13.3, а), протонированное по атому азота. Связывание катионов и анионов между собой происходит посредством водородных связей.

Рисунок 13.3 – Схематическое изображение соединения p-OH-Bp (а) и строение соединения (p-OH-BpH)₃[Fe(Me₂Mal)₃]·2H₂O 18.2 (б) (атомы водорода показаны частично, сольватные молекулы воды не показаны)

Также было изучено взаимодействие ионов железа(III) с анионами этилмалоновой кислоты (EtMal^{2–}). В результате реакции водных растворов нитрата железа(III) и этилмалоната бария (полученного при взаимодействии гидроксида бария и этилмалоновой кислоты) в стехиометрическом соотношении Fe : Ba(EtMal) = 1 : 3 было получено соединение 1D-полимерного строения ${[Ba_2Fe_2(H_2O)_6(OH)_2(EtMal)_4] \cdot 9H_2O}_n$ (19.2) (схема 9.3).

Fe(NO₃)₃·9H₂O + 3Ba(EtMal) \longrightarrow {[Ba₂Fe₂(H₂O)₆(OH)₂(EtMal)₄]·9H₂O}_n H₂O 19.2; 16% Схема 9.3 – Получение соединения 19.2

В **19.2** анионы этилмалоновой кислоты образуют с атомами железа(III) бисхелатные фрагменты {Fe(EtMal)₂}⁻, которые в свою очередь связываются в биядерные тетраанионы {Fe₂(OH)₂(EtMal)₄}⁴⁻ (рис. 14.3 а), подобные по своему строению фрагментам в соединениях **14.2** и **15.2** (d(Fe^{...}Fe) = 3.1038(32) Å). Биядерные фрагменты связываются между собой парами атомов бария, образуя бесконечные цепочки (таблица 7.3, рис 14.3 б, в).

Рисунок 14.3 – Строение биядерного тетрааниона {Fe₂(OH)₂(EtMal)₄}^{4–} (**a**), мономерного фрагмента (**б**) и фрагмента цепочки (**в**) 19.2 (сольватные молекулы воды и атомы водорода этилмалонат-анионов и координированных молекул воды не показаны, заместители в этилмалонат-анионах не показаны для **в**)

Таблина	7	3_	Основные	ппины	свазей	соелинения	10	2
і аблица	1		Осповные	длипы	срязси	сосдинския	17.	

Связь/расстояние	Длина связи/расстояние, Å	
Fe–O(OH)	2.011(11) - 2.034(11)	
Fe–O(EtMal ^{2–})	1.976(11) - 2.011(12)	
M^{II} – $O(H_2O)$	2.699(13) - 2.812(16)	
M ^{II} –O(OH)	2.998(11) - 3.026(11)	
M ^{II} -O(EtMal ²⁻)	2.675(13) - 2.821(11)	
Fe····Fe	3.1038(32)	

3.2 Гетерометаллические координационные соединения железа(III) с анионами циклопропан-1,1-дикарбоновой кислоты

В данном разделе рассматриваются гетероби- и триметаллические комплексы железа(III) с анионами циклопропан-1,1-дикарбоновой кислоты (cpdc^{2–}), влияние исходных соединений на состав образующихся комплексов, а также особенности их строения.

Взаимодействие водных растворов $FeCl_3 \cdot 6H_2O$ и рубидиевой или цезиевой соли циклопропан-1,1-дикарбоновой кислоты (полученных при взаимодействии Rb_2CO_3 или Cs_2CO_3 и H_2cpdc) в стехиометрическом соотношении $Fe : M^{I_2}(cpdc) = 1 : 3$ позволило получить изоструктурные гетеробиметаллические координационные соединения 3D-полимерного строения $[Rb_3Fe(H_2O)_3(cpdc)_3]_n$ (**20.2**) и $[Cs_3Fe(H_2O)_3(cpdc)_3]_n$ (**21.2**) (схема 10.3).

FeCl₃·6H₂O +
$$3M_{2}^{I}(cpdc) \longrightarrow [M_{3}^{I}Fe(H_{2}O)_{3}(cpdc)_{3}]_{n}$$

H₂O $M^{I} = Rb (20.2, 33\%);$
Cs (21.2, 32%)
Схема 10.3 – Получение соединений 20.2 и 21.2

В обоих соединениях атомы железа(III) находятся в октаэдрическом окружении шести атомов кислорода, принадлежащие трем хелатно координированным анионам циклопропан-1,1-дикарбоновой кислоты (таблица 8.3). Образованные таким образом трисхелатные фрагменты { $Fe(cpdc)_3$ }³⁻ связываются между собой при помощи атомов рубидия (**20.2**) или цезия (**21.2**) (рис. 15.3 а, б). Минимальные межатомные расстояния Fe····Fe составляют 8.2280(14) и 8.5513(8) Å, соответственно.

Рисунок 15.3 – Мономерный фрагмент (а) и фрагмент упаковки (б) соединения 21.2 (атомы водорода не показаны; циклопропильные заместители не показаны для б)

б

Таблица 8.3 – Основные длин	ны связей соединений 20.2 и 21.2

Связь/расстояние	Длина связи/расстояние, Å		
	20.2	21.2	
Fe–O(cpdc ^{2–})	1.969(5) - 2.018(5)	1.971(2) - 2.000(2)	
MI-O	2.843(6) - 3.511(6)	2.900(3) - 3.639(3)	
Fe····Fe	8.2280(14)	8.5513(8)	

99

В результате взаимодействия водных растворов $Fe(NO_3)_3 \cdot 9H_2O$ и Ca(cpdc) (полученного при взаимодействии Ca(OH)₂ и H₂cpdc) в мольном соотношении Fe : Ca(cpdc) = 1 : 3 было получено соединение {[Ca₂Fe(H₂O)₆(cpdc)₃](NO₃)}_n (22.2) (схема 11.3). В 22.2 трисхелатные фрагменты {Fe(cpdc)₃}³⁻, аналогичные по строению для 20.2 и 21.2, связываются между собой при помощи атомов кальция, образуя слои (таблица 9.3; рис. 16.3 а, б). Поскольку атомы кальция и фрагменты {Fe(cpdc)₃}³⁻ находятся в стехиометрическом соотношении 2 : 1, в слоях образуется избыточный положительный заряд, который компенсируется внешнесферным нитрат-анионом. Минимальное межатомное расстояние Fe…Fe составляет 9.0690(26) Å.

Рисунок 16.3 – Мономерный фрагмент (а) и фрагмент слоя (б) соединения 22.2 (атомы водорода показаны частично; циклопропильные заметители не показаны для б)

	Длина связи/расстояние, Å			
Связь/расстояние	22.2	23.2	24.2	
Fe-O(cpdc ²⁻)	1.965(7) – 1.999(5)	1.9789(15) – 1.9944(15)	1.9556(15) – 2.0039(15)	
M ^{II} –O(H ₂ O)	2.344(7) - 2.377(7)	2.3790(15) – 2.5225(14)	2.6043(15) – 2.6937(16)	
M ^{II} -O(cpdc ²⁻)	2.281(7) - 2.311(7)	2.2853(14) – 2.4387(14)	2.4951(15) – 2.5319(15)	
Fe····Fe	9.0690(26)	8.0143(6)	8.1949(6)	

Таблица 9.3 – Основные длины связей соединений 22.2–24.2

Замена нитрата железа(III) на хлорид при взаимодействии с водным раствором Ca(cpdc) с сохранением условий реакции приводит к образованию отличающегося по своему строению координационного соединения { $[Ca_6Fe_4(H_2O)_{26}(cpdc)_{12}] \cdot 11H_2O_n$ (23.2) (схема 11.3). В 23.2 также имеются трисхелатные фрагменты { $Fe(cpdc)_3$ }³⁻, однако в отличие от 22.2 они связываются с атомами кальция в соотношении Ca : {Fe(cpdc)} = 3 : 2 с образованием соединения 3D-полимерного строения (таблица 8.3, рис. 17.3 a, б). Минимальное межатомное расстояние Fe^{···}Fe при этом составляет 8.0143(6) Å.

Рисунок 17.3 – Мономерный фрагмент (а) и фрагмент упаковки (б) 23.2 (атомы водорода показаны частично; циклопропильные заместители не показаны для б)

Аналогичный результат наблюдался и при взаимодействии FeCl₃·6H₂O и Sr(cpdc) (полученного при взаимодействии Sr(OH)₂·8H₂O и H₂cpdc) в мольном соотношении 1 : 3 (схема 12.3). В соединении {[Sr₃Fe₂(H₂O)₁₄(cpdc)₆]·4H₂O}_{*n*} (**24.2**) трисхелатные фрагменты {Fe(cpdc)₃}³⁻ и атомы стронция находятся в соотношении 2 : 3 и связываются между собой с образованием соединения 3D-полимерного строения (таблица 9.3, рис. 18.3 а, б). Минимальное межатомное расстояние Fe^{···}Fe при этом составляет 8.1949(6) Å.

103

Рисунок 18.3 – Мономерный фрагмент (а) и фрагмент упаковки (б) соединения 24.2 (атомы водорода показаны частично; циклопропильные заместители не показаны для б)

Использование бариевой соли циклопропан-1,1-дикарбоновой кислоты (полученной при взаимодействии Ba(OH)₂·8H₂O и H₂cpdc) в реакции с хлоридом железа(III) в соотношении 3 : 1 приводит к образованию соединения 3D-полимерного строения, необычного для железа(III) – $[Ba_2Fe_2(H_2O)_8(cpdc)_5]_n$ (25.2) (схема 13.3). В 25.2 атомы железа(III) по своему координационному окружению делятся на два типа: с атомами Fe1 анионы циклопропан-1,1-дикарбоновой кислоты образуют бисхелатные фрагменты {Fe(cpdc)₂}⁻, а с атомами Fe2 – трисхелатные {Fe(cpdc)₃}³⁻. Чередующиеся фрагменты Fe1 и Fe2 связываются между собой в бесконечные цепочки (d_{min} (Fe…Fe) = 5.5824(2) Å) (рис. 19.3 а), которые в свою очередь связываются атомами бария (таблица 10.3, рис. 19.3 б).

Рисунок 19.3 – Фрагмент цепочки (а) и кристаллической упаковки (б) соединения 25.2 (атомы водорода и циклопропильные заместители не показаны)

Было обнаружено, что нагрев до 80 °С реакционной смеси, содержащей FeCl₃·6H₂O и Ba(cpdc), приводит к образованию **25.2** и небольшой примеси кристаллов соединения $[Ba_2Fe_2(H_2O)_8(OH)_2(cpdc)_4]_n$ (**26.2**) (схема 13.3). В **26.2** имеются биядерные тетраанионные фрагменты {Fe₂(OH)₂(cpdc)₄}^{4–} (рис. 20.3 а), строение которых аналогично присутствующим в **14.2**, **15.2** и **19.2** (таблица 10.3). Биядерные фрагменты {Fe₂(OH)₂(cpdc)₄}^{4–} связываются между собой атомами бария, образуя соединение 1D-полимерного строения ($d_{min}(Fe\cdots Fe$) = 3.0574(16) Å) (рис. 20.3 б, в). Исходя из того, что

106

25.2 и **26.2** кристаллизуются в идентичных условиях, за исключением нагрева, можно предположить, что **26.2** образуется в результате частичного гидролиза трисхелатных фрагментов ${Fe(cpdc)_3}^{3-}$ с их последующим попарным связыванием при помощи мостиковых гидроксогрупп.

Рисунок 20.3 – Биядерный тетраанионный фрагмент {Fe₂(OH)₂(cpdc)₄}^{4–} (a), мономерный фрагмент (б) и фрагмент цепочки (в) 26.2 (циклопропильные заместители, сольватные и координированные молекулы воды не показаны)

Chapt / no como guillo	Длина связи/расстояние, Å				
Связь/расстояние	25.2	26.2	27.2		
Fe-O(cpdc ²⁻)	1.9644(16) – 2.0308(16)	$\begin{array}{c c} 0644(16) - \\ 0308(16) \end{array} \qquad 1.975(6) - 2.010(5) \end{array}$			
Fe–O(OH)	—	1.984(6)	_		
$M^{I}-O(H_{2}O)$	-				
M ^I –O(cpdc ^{2–})			5.120(9) - 5.085(11)		
M ^{II} –O(OH)	—	3.188(7)	—		
M^{II} – $O(H_2O)$	2.805(2) - 3.231(2)	2.753(6) - 2.968(6)			
M ^{II} -O(cpdc ²⁻)	2.7426(17) – 2.8631(17)	2.827(5) - 3.284(8)	2.474(8) - 2.813(12)		
Fe····Fe	5.5824(2)	3.0574(16)	8.0929(19)		

Таблица 10.3 – Основные длины связей соединений 25.2–27.2

С целью изучения возможности комбинировать атомы щелочных и щелочноземельных металлов в комплексах железа(III) с анионами замещенных малоновых кислот, было исследовано взаимодействие водных растворов FeCl₃·6H₂O, SrCl₂ и Cs₂(cpdc) (полученного при взаимодействии Cs₂CO₃ и H₂cpdc) в мольном соотношении 1:1:3. В результате был получен гетеротриметаллический комплекс {[Cs₂Sr₅Fe₄(H₂O)₂₈(cpdc)₁₂]·4H₂O}_n (**27.2**) (схема 13.3).

В 27.2 анионы циклопропан-1,1-дикарбоновой кислоты образуют с атомами железа(III) трисхелатные фрагменты ${Fe(cpdc)_3}^{3-}$, идентичные ранее описанным соединениям, которые связываются между собой при помощи атомов цезия и стронция в соотношении Fe : Cs : Sr = 4 : 2 : 5, образуя соединение 3D-полимерного строения $(d_{min}(Fe\cdots Fe) = 8.0929(19) \text{ Å})$ (таблица 10.3, рис. 21.3). Было обнаружено, что введение в реакционную смесь хлорида бария вместо хлорида стронция (с целью получить соответствующий гетеротриметаллический комплекс) приводит к образованию соединения [Ba₂Fe₂(cpdc)₅(H₂O)₈]_n (25.2).

Рисунок 21.3 – Мономерный фрагмент (а) и фрагмент упаковки (б) 27.2 (атомы водорода не показаны; циклопропильные заместители не показаны для б)

3.3 Гетерометаллические координационные соединения железа(III) с анионами циклобутан-1,1-дикарбоновой кислоты

В данном разделе рассматриваются гетеробиметаллические комплексы железа(III) с анионами циклобутан-1,1-дикарбоновой кислоты (cbdc^{2–}) и катионами щелочных и щелочноземельных металлов и исследуются особенности их строения.

Взаимодействие водных растворов нитрата железа(III) и натриевой, рубидиевой циклобутан-1,1-дикарбоновой кислоты или цезиевой соли (полученных при взаимодействии карбонатов соответствующих щелочных металлов и циклобутан-1,1кислоты) в стехиометрическом соотношении $Fe: M_2^{I}(cbdc) = 1:3$ дикарбоновой образованию изомерных гетеробиметаллических соединений приводит к 2Dполимерного строения $[M^{I}Fe(H_{2}O)_{2}(cbdc)_{2}]_{n}$ (M^I = Na для **28.2**, Rb для **29.2**, Cs для **30.2**) (схема 14.3). В **28.2–30.2** атомы железа(III) находятся в октаэдрическом окружении шести атомов кислорода, которые принадлежат двум хелатно координированным анионам циклобутан-1,1-дикарбоновой кислоты и двум координированным молекулам воды (таблица 11.3). Таким образом, структурообразующим звеном в 28.2–30.2 является бисхелатный фрагмент ${Fe(H_2O)_2(cbdc)_2}^-$. Однако строение бисхелатного фрагмента в данных соединениях зависит от катиона, введенного в реакционную смесь: в соединении с натрием (28.2) молекулы воды координированы к атому железа(III) в *иис*-положениях (рис. 22.3 a), а в случае рубидия (**29.2**) и цезия (**30.2**) – в *транс*-положениях (рис. 22.3 б, в).

 $Fe(NO_{3})_{3} \cdot 9H_{2}O + 3M_{2}^{I}(cbdc) \longrightarrow [M^{I}Fe(H_{2}O)_{2}(cbdc)_{2}]_{n}$ $H_{2}O \qquad M^{I} = Na (28.2, 44\%)$ Rb (29.2, 52%); Cs (30.2, 60%)

Схема 14.3 – Получение соединений 28.2–30.2

Рисунок 22.3 – Строение мономерных фрагментов 28.2 (а), 29.2 (б) и 30.2 (в)

Во всех трех случаях бисхелатные фрагменты ${Fe(H_2O)_2(cbdc)_2}^-$ связываются между собой при помощи атомов щелочных металлов, образуя соединение 2D-полимерного строения (рис. 23.3 a, б). Минимальные межатомные расстояния Fe···Fe равны 5.9962(1), 6.0837(4) и 6.2741(10) Å, соответственно.

Рисунок 23.3 – Слои 28.2 (а) и 30.2 (б) (циклобутильные заместители не показаны)

Charles and and a	Длина связи/расстояние, Å					
Связь/расстояние	28.2	29.2	30.2			
Fe–O(H ₂ O)	2.0566(10)	2.0433(12)	2.049(4)			
Fe–O(cbdc ^{2–})	1.9736(10) – 1.9740(9)	1.9806(12) – 1.9847(12)	1.972(5) - 1.983(5)			
$M^{I}-O(H_{2}O)$		3.0380(12)	3.188(4)			
M ^I -O(cbdc ²⁻)	2.3176(11) – 2.4606(10)	2.9812(12) – 3.2980(15)	3.085(5) - 3.512(8)			
Fe····Fe	5.9962(1)	6.0837(4)	6.2741(10)			

Таблица 11.3 – Основные длины связей соединений 28.2–30.2

Введение в реакционную смесь ионов бария(II) вместо ионов щелочных металлов с сохранением условий реакции получения **28–30** привело к образованию гетеробиметаллического комплекса { $[Ba_3Fe_2(H_2O)_9(cbdc)_6]$ ·7H₂O}_n (**31.2**) (схема 15.3). В отличие от ранее описанных соединений железа(III) с анионами циклобутан-1,1дикарбоновой кислоты, в **31.2** анионы кислоты с атомами железа(III) образуют трисхелатные фрагменты { $Fe(cbdc)_3$ }³⁻, которые при помощи атомов бария связываются в слоистый полимер ($d_{min}(Fe\cdots Fe) = 7.0014(9)$ Å) (таблица 12.3, рис. 24.3 a, б).

$Fe(NO_3)_3 \cdot 9H_2O + 3Ba(cbdc) \longrightarrow \{[Ba_3Fe_2(H_2O)_9(cbdc)_6] \cdot 7H_2O\}_n$ $H_2O \qquad 31.2; 16\%$

Схема 15.3 – Получение соединения 31.2

Рисунок 24.3 – Мономерный фрагмент (а) и фрагмент слоя (б) соединения 31.2 (атомы водорода не показаны)

Связь/расстояние	Длина связи/расстояние, Å
Fe–O(cbdc ^{2–})	1.970(3) - 2.026(3)
M^{II} –O(H ₂ O)	2.720(4) - 3.304(4)
M ^{II} –O(cbdc ^{2–})	2.697(3) - 3.194(3)
Fe···Fe	7.0014(9)

Таблица 12.3 – Основные длины связей соединения 31.2

При подведении промежуточных итогов можно отметить, что была подобрана универсальная и вместе с тем оптимальная методика синтеза координационных соединений железа(III) с анионами малоновой кислоты и ее замещенных аналогов. Взаимодействие водных растворов исходной соли железа(III) (нитрата или хлорида) и предварительно полученной соли соответствующей кислоты (в мольном соотношении Fe^{3+} : RR'Mal²⁻ = 1 : 3) приводит к образованию координационных соединений полимерного строения различной размерности (таблица 13.3). Для большинства полученных соединений с анионами малоновой (Mal²⁻) и циклопропан-1,1-дикарбоновой кислоты (cpdc²⁻) и катионами щелочных/щелочноземельных металлов характерно образование трисхелатных фрагментов {Fe(RR'Mal)₃}³⁻. Вместе с тем, были получены соединения, в которых присутствует ранее не описанный для железа(III) фрагмент ${Fe_2(\mu-OH)_2(RR'Mal)_4}^{4-}$, который может связываться между собой при помощи атомов щелочноземельных металлов с образованием соединений цепочечного или слоистого строения. Для соединений железа(III) с анионами циклобутан-1,1-дикарбоновой кислоты (cbdc²⁻) и катионами щелочных металлов наблюдается образование бисхелатных фрагментов ${Fe(H_2O)_2(cbdc)_2}^-$, при этом использование в синтезе натриевой соли приводит к образованию цис-изомера, а рубидиевой или цезиевой – транс-изомера.

Применение аммониевой или тетраэтиламмониевой соли малоновой кислоты приводит к образованию соединений ионного строения (0D). Вместе с тем, сочетание катионов NH₄⁺ + M²⁺ (M²⁺ = Sr, Ba) приводит к образованию соединений 2D-полимерного строения, а замена катионов аммония на катионы щелочных металлов приводит к изменению размерности соединений (2D \rightarrow 3D). К сожалению, не удалось подобрать условия для кристаллизации подобных соединений, сочетающих в себе катионы различной природы, с анионами циклопропан- или циклобутан-1,1-дикарбоновой кислот.

Таблица 13.3 – Размерность полученных координационных соединений железа(III) и строение фрагментов

Катион /	Размерность упаковки и структурообразующий фрагмент					
сочетание катионов	Mal ^{2–}	cpdc ^{2–}	cbdc ^{2–}			
Na ⁺	3D, $\{Fe(Mal)_3\}^{3-}$ [32]	_	2D, μc - {Fe(H ₂ O) ₂ (cbdc) ₂ } ⁻			
K+	-	_	_			
Rb ⁺	3D, $\{Fe(Mal)_3\}^{3-}$	3D, ${Fe(cpdc)_3}^{3-}$	2D, <i>транс</i> - {Fe(H ₂ O) ₂ (cbdc) ₂ } ⁻			
Cs ⁺	3D, $\{Fe(Mal)_3\}^{3-}$	3D, ${Fe(cpdc)_3}^{3-}$	2D, <i>транс</i> - {Fe(H ₂ O) ₂ (cbdc) ₂ } ⁻			
Ca ²⁺	_	2D, {Fe(cpdc) ₃ } ³⁻ (из Fe(NO ₃) ₃) 3D, {Fe(cpdc) ₃ } ³⁻ (из FeCl ₃)	_			
Sr ²⁺	$1D, {Fe_2(OH)_2(Mal)_4}^{4-}$	3D, ${Fe(cpdc)_3}^{3-}$	_			
Ba ²⁺	2D, ${Fe_2(OH)_2(Mal)_4}^4$	3D, {Fe(cpdc) ₂ } ⁻ и {Fe(cpdc) ₃ } ³⁻ при комнатной температуре; 1D, {Fe ₂ (OH) ₂ (cpdc) ₄ } ⁴⁻ при нагревании	2D, ${Fe(cbdc)_3}^{3-}$			
NH4 ⁺	$0D, [Fe(Mal)_3]^{3-}$	_	_			
$NH_4^+ + Sr^{2+}$	2D, $\{Fe(Mal)_3\}^{3-}$	_	_			
$NH_4^+ + Ba^{2+}$	2D, $\{Fe(Mal)_3\}^{3-}$	_	_			
$Na^+ + Sr^{2+}$	-	_	_			
$Na^+ + Ba^{2+}$	3D, $\{Fe(Mal)_3\}^{3-}$ [32]	_	_			
$K^{+} + Sr^{2+}$	3D, $\{Fe(Mal)_3\}^{3-}$	_	_			
$K^{+} + Ba^{2+}$	3D, $\{Fe(Mal)_3\}^{3-}$	_	_			
$Rb^+ + Sr^{2+}$	3D, $\{Fe(Mal)_3\}^{3-}$	_	_			
$Rb^+ + Ba^{2+}$	3D, $\{Fe(Mal)_3\}^{3-}$	_	_			
$Cs^+ + Sr^{2+}$	3D, $\{Fe(Mal)_3\}^{3-}$	3D, $\{Fe(cpdc)_3\}^{3-}$	_			
$Cs^+ + Ba^{2+}$	$3D, \{Fe(Mal)_3\}^{3-}$	_				
Et_4N^+	0D, [Fe(H ₂ O) ₂ (Mal) ₂] ⁻	_	_			
[Cu(bipy) ₂ Cl] ⁺	$0D, [Fe(H_2O)_2(Mal)_2]^-$	_	_			

3.4 Магнитные свойства гетерометаллических комплексов железа(III) с анионами малоновой кислоты

С целью изучения влияния геометрии координационного окружения ионов железа(III) и взаимного расположения парамагнитных центров в кристаллической решетке на магнитное поведение выделенных соединений были проведены измерения магнитной восприимчивости образцов в статическом (в диапазоне температур 300–2 К) и динамическом режиме.

Для соединения {[RbSrFe(H₂O)₆(Mal)₃]·H₂O}_n (**10.2**), значение χ T при 300 K составляет 4.49 см³·K·моль⁻¹, что согласуется со значением χ T для магнитноизолированного иона железа(III) [91] (⁶A_{1g}, S = 5/2, g = 2, χ T_{теор} = 4.44 см³·K·моль⁻¹) (рис. 25.3). При понижении температуры до 25 K значение χ T практически не меняется, дальнейшее охлаждение сопровождается снижением значения до 4.02 см³·K·моль⁻¹ при 2 K (рис. 15.3). Аппроксимация экспериментальных данных с использованием программы PHI [92] позволила определить значения *g*-фактора (2.031), параметра межмолекулярного обмена *zJ* (-0.004 см⁻¹) и аксиального параметра магнитной анизотропии *D* (-0.06 см⁻¹). Рассчитанные квантово-химическими методами значения $g_{1so} = 2.002$ и *D* = -0.074 см⁻¹ хорошо согласуются с результатами, полученными из анализа экспериментальных данных. Измерения динамической магнитной восприимчивости показали отсутствие медленной магнитной релаксации для этого соединения.

Рисунок 25.3 – Температурная зависимость $\chi T(T)$ соединения 10.2 в магнитном поле 5000 Э. Сплошная красная линия – теоретическая кривая [92]

Для соединения {[LaFe(H₂O)₃(Mal)₃]· $3.25H_2O$ }_{*n*} (**16.2**) значение χT при 300 К составляет 4.55 см³·K·моль⁻¹, близкое к теоретическому для магнитно-изолированного

иона железа(III). При понижении температуры значение χ T практически не меняется вплоть до 25 K, затем наблюдается снижение до 3.63 см³·K·моль⁻¹ при 2 K (рис. 26.3). В результате анализа экспериментальных данных с использованием программы PHI наилучшая аппроксимация была достигнута при $g_{iso} = 2.042$, D = -0.085 см⁻¹ и zJ = -0.013 см⁻¹. В результате квантово-химических расчетов были получены значения $g_{iso} = 2.002$ и D = -0.054 см⁻¹, что также хорошо согласуется с результатами аппроксимации.

Рисунок 26.3 – Температурная зависимость $\chi T(T)$ соединения 16.2 в магнитном поле 5000 Э. Сплошная красная линия – теоретическая кривая [92]

По результатам измерений динамической магнитной восприимчивости обнаружено, что соединение **16.2** проявляет медленную релаксацию намагниченности в магнитном поле 5000 Э (рис. 27.3 б, г) [93]. Наилучшая аппроксимация зависимости $\tau(1/T)$ была выполнена с учетом суммы механизмов Рамана и квантового туннелирования намагниченности (КТН) со следующими параметрами: $C_{Raman} = 55.4 \text{ K}^{-3.5} \cdot \text{c}^{-1}$, $\tau^{-1}_{QTM} = 22163 \text{ c}^{-1}$ (формула 1, рис. 27.3 д).

$$\tau_0^{-1} = \mathsf{C}_{Raman} T^n + \tau_{QTM}^{-1} (1)$$

Рисунок 27.3 – Частотные зависимости реальной (χ') и мнимой (χ") компоненты динамической магнитной восприимчивости в различных полях (**a**, **б**) и при разных температурах (**в**, **г**); зависимость времени релаксации от обратной температуры (д) для соединения 16.2

Для соединения {[$Pr_3Fe(H_2O)_{10}(Mal)_6$]·6.5 H_2O }_n (**17.2**) наблюдаемое значение χT при 300 K соответствует 9.23 см³·K·моль⁻¹, и близко сумме теоретических значений

(9.24 см³·К·моль⁻¹) для трех магнитно-изолированных ионов празеодима(III) (³H₄, S = 1, g = 4/5, $\chi T_{reop} = 1.60$ см³·К·моль⁻¹) и железа(III). Понижение температуры сопровождается монотонным уменьшением χT до 4.24 см³·К·моль⁻¹ при 2 К (рис. 28.3), что может быть обусловлено спин-орбитальными взаимодействиями для ионов празеодима(III) и/или обменными взаимодействиями между парамагнитными центрами. В результате квантовохимических расчетов для иона Fe³⁺ получены следующие значения параметров $g_{iso} = 2.002$ и D = -0.076 см⁻¹.

Рисунок 28.3 – Температурная зависимость $\chi T(T)$ соединения 17.2 в магнитном поле 5000 Э

Для 17.2 измерения динамической магнитной восприимчивости показали наличие медленной релаксации намагниченности в магнитном поле 2500 Э (рис. 29.3 б, г). Наилучшая аппроксимация зависимости $\tau(1/T)$ выполнена с использованием механизмов Рамана и КТН: С_{Raman} = 2 K⁻⁷·c⁻¹, τ^{-1} _{QTM} = 8502 c⁻¹ (формула 1, рис. 29.3 д). Источником магнитной релаксации может быть как катион железа(III), так и катионы празеодима(III), но в литературе не было найдено информации о молекулярных магнитных материалах на основе трехвалентного празеодима.

Рисунок 29.3 – Частотные зависимости реальной (χ') и мнимой (χ") компоненты динамической магнитной восприимчивости в различных полях (**a**, **б**) и при разных температурах (**в**, **г**); зависимость времени релаксации от обратной температуры (д) для соединения **17.2**

3.5 Магнитные свойства гетерометаллических комплексов железа(III) с анионами циклопропан-1,1-дикарбоновой кислоты

Значение χ T для соединения {[Ca₂Fe(H₂O)₆(cpdc)₃](NO₃)}_n (**22.2**) при 300 К составляет 4.49 см³·К·моль⁻¹, что близко к теоретическому значению для магнитноизолированного иона железа(III). При понижении температуры значение χ T практически неизменно плоть до 8 К, далее наблюдается снижение значения χ T до 4.15 см³·К·моль⁻¹ при 2 К (рис. 30.3). Аппроксимация экспериментальной зависимости при помощи программы РНI позволила определить значение g-фактора ($g_{iso} = 2.036$), аксиального параметра магнитной анизотропии (D = 0.018 см⁻¹) и межмолекулярного обмена (zJ = -0.002 см⁻¹). В результате квантово-химических расчетов были получены значения $g_{iso} = 2.002$ и D = -0.047 см⁻¹.

Рисунок 30.3 – Температурная зависимость $\chi T(T)$ соединения 22.2 в магнитном поле 5000 Э. Сплошная красная линия – теоретическая кривая [92]

В результате исследований динамической магнитной восприимчивости для соединения **22.2** выявлено наличие медленной магнитной релаксации в магнитном поле 2500 Э (рис. 31.3 a, б). Наилучшая аппроксимация зависимости τ (1/T) была проведена с использованием механизма Рамана (С_{Raman} = 405 K^{-2.73}·c⁻¹, формула 2, рис. 31.3 в).

$$\tau_0^{-1} = \mathcal{C}_{Raman} T^n (2)$$

Рисунок 31.3 – Частотные зависимости реальной (χ') и мнимой (χ") компоненты динамической магнитной восприимчивости в различных полях (**a**, **б**) и при разных температурах (**b**, **г**); зависимость времени релаксации от обратной температуры (д) соединения 22.2

Для соединения $[Ba_2Fe_2(H_2O)_8(cpdc)_5]_n$ (**25.2**) значение χT при 300 К составляет 8.77 см³·К·моль⁻¹, что немного ниже рассчитанной суммы для двух магнитноизолированных ионов железа(III) (8.88 см³·К·моль⁻¹). Понижение температуры приводит

123

к монотонному снижению χT во всем температурном интервале 300-40 К до 8.10 см³·К·моль⁻¹, и дальнейшему падению до 1.82 см³·К·моль⁻¹ при 2 К (рис. 32.3). $\chi T(T)$ Подобный ход зависимости может свидетельствовать 0 наличии антиферромагнитных взаимодействий цепочках $-{Fe(cpdc)_2}-{Fe(cpdc)_3}-,$ В карбоксилатные реализуемых через мостиковые группы. Аппроксимация экспериментальных данных в программе РНІ с использованием формализма спин-Гамильтониана (формула 3) позволила определить значения g-факторов, аксиального параметра магнитной анизотропии (D) и параметра внутримолекулярного обмена Fe1…Fe2 (*J*_{Fe1…Fe2}). Полученные значения хорошо согласуются с результатами квантовохимических расчетов (таблица 14.3). По данным измерений динамической магнитной восприимчивости, медленная релаксация намагниченности для соединения 25.2 не наблюдается.

Рисунок 32.3 – Температурная зависимость хТ соединения 25.2 в магнитном поле 5000 Э. Сплошная красная линия – теоретическая кривая [92]

Таблица 14.3 – Результаты аппроксимации зависимости χT с использованием программы РНІ и квантово-химических расчетов для соединения **25.2**

Параметр	Значение					
Метод	PHI CASSCF/NEVPT2 BS-DFT					
giso	2.021 2.008	2.002 2.002	_			
D_i, cm^{-1}	0.614 0.057	0.212 0.068	_			
$J_{\rm Fe1\cdots Fe2}$, cm ⁻¹	-0.395	_	-0.19			

3.6 Магнитные свойства гетерометаллических комплексов железа(III) с анионами циклобутан-1,1-дикарбоновой кислоты

Для серии соединений **28.2–30.2** ([M^IFe(H₂O)₂(cbdc)₂]_n, где M^I = Na (**28.2**), Rb (**29.2**), Cs (**30.2**)), значения χ T при 300 K составляют 4.50, 4.51 и 4.48 см³·K·моль⁻¹, соответственно, что хорошо согласуется с теоретическим значением для магнитноизолированных ионов железа(III) (рис. 33.3). При охлаждении значения χ T остаются постоянными до 50 K, затем для соединений **29.2** и **30.2** они снижаются до 3.67 и 3.47 см³·K·моль⁻¹ при 2 K, соответственно. В случае **28.2** монотонное снижение χ T наблюдается уже при 90 K, и при 2 K оно принимает минимальное значение 2.54 см³·K·моль⁻¹. Такой ход экспериментальной зависимости может быть обусловлен магнитной анизотропией и/или эффектом Зеемана (эффектом насыщения) в постоянном магнитном поле и/или межмолекулярными обменными взаимодействиями.

Рисунок 33.3 – Температурные зависимости χT для соединений 28.2 (а), 29.2 (б) и 30.2 (в) в магнитном поле 5000 Э. Сплошные красные линии – теоретические кривые [92]

С целью определить, какие взаимодействия отвечают за подобное поведение соединений в приложенном поле, была проведена аппроксимация экспериментальных зависимостей χ T(T) при помощи программы PHI, в результате чего были определены значения *g*-факторов, параметров обмена *zJ* и аксиальных параметров магнитной анизотропии *D* (таблица 15.3). Полученные таким образом значения *D* хорошо согласуются с результатами квантово-химических расчетов. Исходя из значений полученных параметров, для соединений **29.2** и **30.2** магнитная анизотропия ионов Fe³⁺ соответствует типу «легкая плоскость», в то время как для **28.2** – типу «легкая ось».

Таблица 15.3 – Результаты аппроксимации кривых $\chi T(T)$ и квантово-химических расчетов для соединений **20.2–22.2**

Параматр	Значение					
параметр	28.2		29.2		30.2	
Метод	PHI CASSCF/ NEVPT2		PHI CASSCF/ NEVPT2		PHI	CASSCF/ NEVPT2
$g_{ m iso}$	2.034	2.002	2.033	2.002	2.037	2.002
$D, \operatorname{cm}^{-1}$	-1.13	-0.37	0.63	0.50	0.61	0.54
zJ, cm^{-1}	-0.047	_	-0.009	_	-0.012	_

Анализ экспериментальных зависимостей M(H) при 2, 4 и 6 К показывает, что основное спиновое состояние для трех соединений **28.2–30.2** соответствует S = 5/2 (рис. 34.3).

Рисунок 34.3 – Полевые зависимости намагниченности (М(Н)) при 2, 4 и 6 К для соединений 28.2 (а), 29.2 (б) и 30.2 (в). Сплошные линии – теоретические кривые

По данным измерений динамической магнитной восприимчивости, медленная релаксация намагниченности для соединений **28.2–30.2** не наблюдается.

В заключении по результатам анализа магнитных, структурных и расчетных данных (результаты аппроксимации в программе PHI, квантово-химические расчеты, расчетные значения дипольных взаимодействий ($|E_d| \approx [\mu_{eff}(Fe)]^2/(d_{min})^3$, где $\mu_{eff}(Fe) \approx 5.92$ μ_B , d_{\min} – минимальное межатомное расстояние Fe···Fe) и значения степени искажения октаэдра FeO₆ от идеальной симметрии (CShM, [94]) приведены в таблице 16.3) можно сделать следующие выводы: 1) магнитная анизотропия ионов Fe³⁺ в трисхелатных фрагментах { $Fe(RR'Mal)_3$ }³⁻ регулируется в диапазоне $-0.09 \div 0.02$ см⁻¹ искажением Fe^{3+} симметрии октаэдрического кристаллического ионов катионами поля гетерометаллов и кристаллической упаковкой; 2) на примере соединений железа(III) с бисхелатным фрагментом ${Fe(H_2O)_2(cbdc)_2}^-$ продемонстрировано влияние взаимного расположения молекул воды на тип магнитной анизотропии парамагнитного центра: с

положительного для *транс*-формы на отрицательный для *цис*-формы; 3) при связывании бис- и трисхелатных фрагментов в 1D-полимерную цепь через карбоксилатные мостики реализуются обменные взаимодействия антиферромагнитного типа. Оценка межмолекулярных взаимодействий показывает их обратную зависимость от роста межатомного расстояния Fe^{···}Fe, что может быть обусловлено магнитными дипольными взаимодействиями, и каналами обменов через H-связи для **28.2–30.2**.

аблица 16.3 – Сводная таблица значений параметров, полученных при аппроксимации экспериментальных данных и расчетны	МИ
етодами	

Соотничение	d · (FamEa) Å	CShM	Молон					
Соединение	$a_{\min}(re\cdots re), A$	CSIIVI	метод	$g_{ m iso}$	D, cm^{-1}	zJ, cm ⁻¹	$ L_d , CM$	
10.2	10.2 9.10(5(7)	0.222	PHI	2.031 ± 0.0003	-0.06 ± 0.01	-0.004 ± 0.0003	0.07	
10.2	8.1003(7)	0.552	CASSCF/NEVPT2	2.002	-0.074	—	0.07	
16.3	<u>8 2407(0)</u>	0.254	PHI	2.042 ± 0.001	-0.085 ± 0.008	-0.013 ± 0.0005	0.00	
10.2	8.2497(9)	0.234	CASSCF/NEVPT2	2.002	-0.054	—	0.06	
17.2	9.7521(0)	0.165	PHI	_	_	—	0.05	
17.2	8.7551(9)	0.165	CASSCF/NEVPT2	2.002	-0.076	—	0.05	
22.2	0.0600(26)	0.107	PHI	2.036±0.0003	$0.018 {\pm} 0.005$	-0.002 ± 0.0001	0.05	
22.2	9.0090(20)	0.107	CASSCF/NEVPT2	2.002	-0.047	—	0.05	
25.2	5.5824(2)	0.079 (Fe1)* 1.124 (Fe2)	PHI	2.021 ± 0.001 2.008+0.0003	0.614 ± 0.043 -0.057+0.004	-0.395 ± 0.001	_	
			CASSCF/NEVPT2	2.002 2.002	0.212 (Fe1) -0.068 (Fe2)	_		
			BS-DFT	_	_	-0.19		
28.2	5.00(2(1)	0.122	PHI	2.034±0.0002	-1.13 ± 0.02	-0.047 ± 0.0004	0.16	
28.2	28.2 5.9962(1) 0.122		CASSCF/NEVPT2	2.002	-0.37	_	0.16	
29.2	6.0837(4)	0.130	PHI	2.033 ± 0.0004	$0.63{\pm}0.02$	-0.009 ± 0.0003	0.16	
			CASSCF/NEVPT2	2.002	0.50	_		
30.2	6 27/11(10)	741(10) 0.140	PHI	2.037±0.001	0.61±0.02	-0.012 ± 0.0005	0.14	
	0.2/41(10)		CASSCF/NEVPT2	2.002	0.54	_	0.14	
* - обозначения Fe1 и Fe2 соответствуют обозначениям атомов в разделе с описанием строения								

выводы

1. Разработаны методики синтеза новых координационных соединений железа(III) с анионами малоновой кислоты и ее замещенных аналогов и катионами различной природы (аммония, тетраэтиламмония, щелочных, щелочноземельных и редкоземельных металлов).

2. Показано, что анионы малоновой кислоты и ее замещенных аналогов с атомами железа(III) образуют преимущественно трисхелатные фрагменты ${Fe(RR'Mal)_3}^{3-}$, также выделены соединения со структурообразующими фрагментами бисхелатного ${Fe(H_2O)_2(RR'Mal)_2}^-$ и ранее неизвестного для железа(III) биядерного ${Fe_2(\mu-OH)_2(RR'Mal)_4}^{4-}$ строения.

3. Показано, что природа заместителя малоновой кислоты определяет размерность упаковки соединений железа(III) с катионами щелочных металлов, связывающих фрагменты {Fe(RR'Mal)₃}³⁻ в слоистые соединения с анионами циклобутан-1,1дикарбоновой кислоты и в каркасные – с анионами малоновой и циклопропан-1,1дикарбоновой.

4. Установлено влияние исходной соли железа(III) на состав и строение образующихся координационных соединений полимерного строения на примере комплексов с катионами кальция и анионами циклопропан-1,1-дикарбоновой кислоты: применение нитрата железа(III) приводит к образованию слоистого соединения {[Ca₂Fe(H₂O)₆(cpdc)₃](NO₃)}_n, хлорида железа(III) – к образованию каркасного соединения {[Ca₆Fe₄(H₂O)₂₆(cpdc)₁₂]·11H₂O}_n.

5. Показано, что знак магнитной анизотропии моноядерных бис- и трисхелатных фрагментов может быть отрегулирован взаимным расположением лигандов, а также катионами, определяющими кристаллическую упаковку.

6. Для соединений $\{[LaFe(H_2O)_3(Mal)_3] \cdot 3.25H_2O\}_n$, $\{[Pr_3Fe(H_2O)_{10}(Mal)_6] \cdot 6.5H_2O\}_n$ и $\{[Ca_2Fe(H_2O)_6(cpdc)_3](NO_3)\}_n$ было определено наличие медленной релаксации намагниченности в приложенном магнитном поле.

СПИСОК ЛИТЕРАТУРЫ

Bogani, L. Molecular spintronics using single-molecule magnets / L. Bogani, W. Wernsdorfer // Nature Mater. – 2008. – V. 7. – P. 179–186. DOI: 10.1038/nmat2133.

Awschalom, D.D. Challenges for semiconductor spintronics / D.D. Awschalom, M.E.
 Flatte // Nature Phys. – 2007. – V. 3. – P. 153–159. DOI: 10.1038/nphys551.

Choi, H.-K. High-Resolution Single-Molecule Magnetic Tweezers / H.-K.- Choi, H.G.
 Kim, M.J. Shon, T.-Y. Yoon // Annu. Rev. Biochem. – 2022. – V. 91. – P. 33–59.
 DOI: 10.1146/annurev-biochem-032620-104637.

4. Palacios, M.A. Bifunctional Zn^{II}Ln^{III} Dinuclear Complexes Combining Field Induced SMM Behavior and Luminescence: Enhanced NIR Lanthanide Emission by 9-Anthracene Carboxylate Bridging Ligands / M.A. Palacios, S. Titos-Padilla, J. Ruiz, J.M. Herrera, S.J.A. Pope, E.K. Brechin, E. Colacio // Inorg. Chem. – 2013. – V. 53. – № 3. – P. 1465–1474. DOI: 10.1021/ic402597s.

 López-Cabrelles, J. Solvent-Free Synthesis of a Pillared Three-Dimensional Coordination Polymer with Magnetic Ordering / J. López-Cabrelles, M. Giménez-Marqués, G.M. Espallargas, E. Coronado // Inorg. Chem. – 2015. – V. 54. – № 21. – P. 10490–10496. DOI: 10.1021/acs.inorgchem.5b02003.

6. Zorina, L.V. Slow Magnetic Relaxation, Antiferromagnetic Ordering, and Metamagnetism in $Mn^{II}(H_2dapsc)$ -Fe^{III}(CN)₆ Chain Complex with Highly Anisotropic Fe-CN-Mn Spin Coupling / L.V. Zorina, S.V. Simonov, V.D. Sasnovskaya, A.D. Talantsev, R.B. Morgunov, V.S. Mironov, E.B. Yagubskii // Chem. Eur. J. – 2019. – V. 25. – N_{2} 64. – P. 14583-14597. DOI: 10.1002/chem.201902551.

7. Sessoli, R. Magnetic bistability in a metal-ion cluster / R. Sessoli, D. Gatteschi, A. Caneschi, M.A. Novak // Nature. – 1993. – V. 365. – P. 141–143. DOI: 10.1038/365141a0.

Zabala-Lekuona, A. Single-Molecule Magnets: From Mn12-ac to dysprosium metallocenes, a travel in time / A. Zabala-Lekuona, J.M. Seco, E. Colacio // Coord. Chem. Rev. – 2021. – V. 441. – P. 213984. DOI: 10.1016/j.ccr.2021.213984.

Freedman, D.E. Slow Magnetic Relaxation in a High-Spin Iron(II) Complex / D.E.
 Freedman, W.H. Harman, T.D. Harris, G.J. Long, C.J. Chang, J.R. Long // J. Am. Chem. Soc. –
 2010. – V. 132. – № 4. – P. 1224–1225. DOI: 10.1021/ja909560d.

10. Sarkar, A. Role of Coordination Number and Geometry in Controlling the Magnetic Anisotropy in Fe^{II}, Co^{II}, and Ni^{II} Single-Ion Magnets / A. Sarkar, S. Dey, G. Rajaraman // Chem. Eur. J. $-2020. - V. 26. - N_{\odot} 62. - P. 14036-14058$. DOI: 10.1002/chem.202003211.

Sahu, P.K. Understanding the unceasing evolution of Co(II) based single-ion magnets /
P.K. Sahu, R. Kharel, S. Shome, S. Goswami, S. Konar // Coord. Chem. Rev. – 2023. – V. 475.
– P. 214871. DOI: 10.1016/j.ccr.2022.214871.

12. Zadrozny, J.M. Slow magnetization dynamics in a series of two-coordinate iron(II) complexes / J.M. Zadrozny, M. Atanasov, A.M. Bryan, C.-Y. Lin, B.D. Rekken, P.P. Power, F. Neese, J.R. Long // Chem. Sci. – 2013. – V. 4. – P. 125–138. DOI: 10.1039/c2sc20801f.

13. Feng, M. Single Ion Magnets from 3d to 5f: Developments and Strategies / M. Feng, M.-L. Tong // Chem. Eur. J. – 2018. – V. 24. – № 30. – P. 7574–7594.
DOI: 10.1002/chem.201705761.

Frost, J.M. The rise of 3-d single-ion magnets in molecular magnetism: towards materials from molecules? / J.M. Frost, K.L.M. Harriman, M. Murugesu // Chem. Sci. – 2016. – V. 7. – P. 2470–2491. DOI: 10.1039/C5SC03224E.

Zhu, Z. Molecular magnetism of lanthanide: Advances and perspectives / Z. Zhu, M. Guo,
 X.-L. Li, J. Tang // Coord. Chem. Rev. – 2019. – V. 378. – P. 350–364.
 DOI: 10.1016/j.ccr.2017.10.030.

 Perlepe, P.S. Smart Ligands for Efficient 3d-, 4d- and 5d-Metal Single-Molecule Magnets and Single-Ion Magnets / P.S. Perlepe, D. Maniaki, E. Pilichos, E. Katsoulakou, S.P. Perlepes // Inorganics. – 2020. – V. 8. – № 6. – P. 39. DOI: 10.3390/inorganics8060039.

Jochim, A. Influence of the Coligand onto the Magnetic Anisotropy and the Magnetic Behavior of One-Dimensional Coordination Polymers / A. Jochim, T. Lohmiller, M. Rams, M. Bohme, M. Ceglarska, A. Schnegg, W. Plass, C. Nather // Inorg. Chem. – 2020. – V. 59. – № 13. – P. 8971–8982. DOI: 10.1021/acs.inorgchem.0c00815.

18. Palacios, M.A. Tuning magnetic anisotropy by the π -bonding features of the axial ligands and the electronic effects of gold(I) atoms in 2D {Co(L)₂[Au(CN)₂]₂}_n metal–organic frameworks with field-induced single-ion magnet behaviour / M.A. Palacios, I.F. Diaz-Ortega, H. Nojiri, E.A. Suturina, M. Ozerov, J. Krzystek, E. Colacio // Inorg. Chem. Front. – 2020. – V. 7. – P. 4611–4630. DOI: 10.1039/D0QI00996B.

19. Field-induced slow magnetic relaxation of octahedrally coordinated mononuclear Fe(III)-, Co(II)-, and Mn(III)-containing polyoxometalates / R. Sato, K. Suzuki, T. Minato, M. Shinoe,

K. Yamaguchi, N. Mizuno // Chem. Comm. – 2015. – V. 51. – P. 4081–4084. DOI: 10.1039/C4CC09435B.

20. Viciano-Chumillas, M. Single-Ion Magnetic Behaviour in an Iron(III) Porphyrin Complex: A Dichotomy Between High Spin and 5/2–3/2 Spin Admixture / M. Viciano-Chumillas, G. Blondin, M. Clemancey, J. Krzystek, M. Ozerov, D. Armentano, A. Schnegg, T. Lohmiller, J. Telser, F. Lloret, J. Cano // Chem. Eur. J. – 2020. – V. 26. – № 62. – P. 14242–14251. DOI: 10.1002/chem.202003052.

21. Mossin, S. A Mononuclear Fe(III) Single Molecule Magnet with a 3/2↔5/2 Spin Crossover / S. Mossin, B.L. Tran, D. Adhikari, M. Pink, F.W. Heinemann, J. Sutter, R.K. Szilagyi, K. Meyer, D.J. Mindiola // J. Am. Chem. Soc. – 2021. – V. 134. – № 33. – P. 13651–13661. DOI: 10.1021/ja302660k.

22. Coronado, E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices / E. Coronado // Nature Rev. Mater. – 2020. – V. 5. – P. 87–104. DOI: 10.1038/s41578-019-0146-8.

23. Moreno-Pineda, E. Measuring molecular magnets for quantum technologies / E. Moreno-Pineda, W. Wernsdorfer // Nature Rev. Phys. – 2021. – V. 3. – P. 645–659.
DOI: 10.1038/s42254-021-00340-3.

Aravena, D. Spin dynamics in single-molecule magnets and molecular qubits / D.
Aravena, E. Ruiz // Dalton. Trans. – 2020. – V. 49. – P. 9916–9928.
DOI: 10.1039/D0DT01414A.

Chilton, N.F. Molecular Magnetism / N.F. Chilton // Annu. Rev. Mater. Res. – 2020. –
 V. 52. – P. 79–101. DOI: 10.1146/annurev-matsci-081420-042553.

26. Albores, P. Structural and Magnetic Characterization of a μ -1,5-Dicyanamide-Bridged Iron Basic Carboxylate [Fe₃O(O₂C(CH₃)₃)₆] 1D Chain / P. Albores, E. Rentschler // Inorg. Chem. – 2008. – V. 47. – Nº 18. – P. 7960–7962. DOI: 10.1021/ic801113d.

27. A new heterometallic pivalate {Fe₈Cd} complex as an example of unusual "ferric wheel" molecular self-assembly / E.A. Lutsenko, M.A. Kiskin, K.A. Lysenko, E.M. Zueva, N.N. Efimov, E.A. Ugolkova, Y.V. Maksimov, V.K. Imshennik, M.M. Petrova, A.A. Sidorov, I.L. Eremenko // Dalton Trans. – 2020. – V. 49. – P. 15175–15179. DOI: 10.1039/D0DT03142A.

28. Ravi, N. Moessbauer and x-ray studies of ferrous malonate dihydrate, $Fe(C_3H_3O_4)_2 \cdot 2H_2O$ / N. Ravi, R. Jagannathan, B.R. Rao, M.R. Hussain // Inorg. Chem. – 1982. – V. 21. – No 3. – P. 1019–1022. DOI: 10.1021/ic00133a029. 29. Briggman, B. Magnesium bis(hydrogen malonate) dihydrate / B. Briggman, Å. Oskarsson
//Acta Cryst. - 1978. - V. B34. - P. 3357-3359. DOI: 10.1107/S0567740878010924.

30. Wang, Z.-L. Diaqua-bis[malonato(1-)-κ²O,O']cobalt(II) / Z.-L. Wang, L.-H. Wei, J.-Y. Niu // Acta Cryst. – 2005. – V. E61. – P. m1907–m1908. DOI: 10.1107/S1600536805027157.

31. Clegg, W. Structure of hexaamminecobalt(III) tris(malonato)ferrate(III) pentahydrate, $[Co(NH_3)_6][Fe(C_3H_2O_4)_3] \cdot 5H_2O / W.$ Clegg // Acta Cryst. – 1985. – V. C41. – P. 1164–1166. DOI: 10.1107/S0108270185006990.

32. Calogero, S. X-ray crystal structures and Mössbauer studies of some trismalonatoferrate(III) compounds / S. Calogero, L. Stievano, L. Diamandescu, D. Mihaila-Tarabasanu, G. Valle // Polyhedron. – 1997. – V. 16. – № 23. – P. 3953–3966. DOI: 10.1016/S0277-5387(97)00195-2.

33. de Muro, I.G. Structural, Spectroscopic, Magnetic and Thermal Properties in the $[SrM(C_3H_2O_4)_2(H_2O)_5]$ ·2H₂O (M = Mn, Fe, Co, Ni) System: Precursors of SrMO_{3-x} Mixed Oxides // Eur. J. Inorg. Chem. – 1999. – V. 1999. – № 6. – P. 935–943. DOI: 10.1002/(SICI)1099-0682(199906)1999:6<935::AID-EJIC935>3.0.CO;2-M.

34. Gushee, B.E. The Preparation of a Barium Cobalt Oxide and other Phases with Similar Structures / B.E. Gushee, L. Katz, R. Ward // J. Am. Chem. Soc. – 1957. – V. 79. – № 21. – P. 5601–5603. DOI: 10.1021/ja01578a004.

35. de Muro, I.G. Study of the $[CaM(C_3H_2O_4)_2(H_2O)_4] \cdot nH_2O$ [M = Mn, Fe or Co (n = 0) and Ni (n = 2)] systems: synthesis, structure, spectroscopic and magnetic properties / I.G. de Muro, M. Insausti, L. Lezama, M.K. Urtiaga, M.I. Arriortua, T. Rojo // J. Chem. Soc., Dalton Trans. – 2000. – P. 3360–3364. DOI: 10.1039/B005661H.

36. de Muro, I.G. Layered $[BaM(C_3H_2O_4)_2(H_2O)_4]$ (M = Fe or Co) Complexes – Spectroscopic, Magnetic and Thermal Study / I.G. de Muro, L. Lezama, M. Insausti, T. Rojo // Eur. J. Inorg. Chem. – 2003. – V. 2003. – Nº 16. – P. 2948–2954. DOI: 10.1002/ejic.200300077. 37. de Muro, I.G. Study of the Two-Dimensional $[MM'(C_3H_2O_4)_2(H_2O)_4]$ (M = Ba, Sr and M' = Cu, Mn) Systems: Synthesis, Structure, Magnetic Properties, and Thermal Decomposition / I.G. de Muro, F.A. Mautner, M. Insausti, M.I. Arriortua, T. Rojo // Inorg. Chem. – 1998. – V. 37. – Nº 13. – P. 3243–3251. DOI: 10.1021/ic9800132.

38. de Muro, I.G. Effect of the synthesis conditions on the magnetic and electrical properties of the BaFeO_{3-x} oxide: A metamagnetic behavior / I.G. de Muro, M. Insausti, L. Lezama, T.

Rojo // J. Solid State Chem. – 2005. – V. 178. – № 5. – P. 1712–1719. DOI: 10.1016/j.jssc.2005.03.028.

Ahouari, H. Synthesis, structure and electrochemical properties of metal malonate 39. $Na_2M(H_2C_3O_4)_2 \cdot nH_2O$ (n = 0, 2) compounds and comparison with oxalate $Na_2M_2(C_2O_4)_3 \cdot 2H_2O$ compounds / H. Ahouari, G. Rousse, Y. Klein, J.-N. Chotard, M.T. Sougrati, N. Recham, J.-M. State V. Tarascon // Solid Sci. 2015. 42. P. 6-13. _ DOI: 10.1016/j.solidstatesciences.2015.02.009.

40. Wang, D.-Q. Poly[diaqua-di-μ-malonato-cobalt(II)disodium(I)] / D.-Q. Wang // Acta Cryst. – 2006. – V. E62. – P. m1530–m1532. DOI: 10.1107/S1600536806021416.

41. Cuevas, A. Synthesis, crystal structure and magnetic properties of novel heterobimetallic malonate-bridged $M^{II}Re^{IV}$ complexes (M = Mn, Fe, Co and Ni) / A. Cuevas, C. Kremer, L. Suescun, S. Russi, A.W. Mombru, F. Lloret, M. Julve, J. Faus // Dalton Trans. – 2007. – P. 5305–5315. DOI: 10.1039/B708927A.

42. Deniz, M. Metal-organic coordination frameworks based on mixed methylmalonate and
4,4'-bipiridine ligands: synthesis, crystal structure and magnetic properties / M. Deniz, J. Pasan,
O. Fabelo, L. Canadillas-Delgado, F. Lloret, M. Julve, C. Ruiz-Perez // New J. Chem. – 2010. –
V. 34. – P. 2515–2527. DOI: 10.1039/C0NJ00436G.

43. Kim, Y.J. Solid solution of transition metal-dicarboxylates with tunable magnetic properties / Y.J. Kim, D.-Y. Jung, K.-P. Hong, G. Demazeau // Solid State Sci. – 2001. – V. 3. – N_{2} 8. – P. 837–846. DOI: 10.1016/S1293-2558(01)01187-6.

44. Sibille, R. Site-Dependent Substitutions in Mixed-Metal Metal–Organic Frameworks: A Case Study and Guidelines for Analogous Systems / R. Sibille, T. Mazet, B. Malaman, Q. Wang, E. Didelot, M. Francois // Chem Mater. – 2015. – V. 27. – № 1. – P. 133–140. DOI: 10.1021/cm503570f.

45. Li, D.-f. Synthesis, characterization and catalytic ATP-hydrolysis of two tetrairon(III) complexes bridged by succinate/terephthalate with tris(2-benzimidazolylmethyl) amine / D.-f. Li, Zh.-r. Liao, Y.-g. Wei, F. Du, M. Wang, W.-x. Chen, W.-k. Li, X.-a. Mao // Dalton Trans. – 2003. – P. 2164–2169. DOI: 10.1039/B303369B.

46. Zheng, Y.-Zh. Probing Single-Chain Magnets in a Family of Linear Chain Compounds Constructed by Magnetically Anisotropic Metal-Ions and Cyclohexane-1,2-Dicarboxylate Analogues / Y.-Zh. Zheng, W. Xue, M.-L. Tong, X.-M. Chen, Sh.-L. Zheng // Inorg. Chem. – 2008. – V. 47. – № 23. – P. 11202–11211. DOI: 10.1021/ic801498n. 47. Fischer, M.E. Magnetism in One-Dimensional Systems—The Heisenberg Model for Infinite Spin / M.E. Fischer // Am. J. Phys. – 1964. – V. 32. – P. 343–346. DOI: 10.1119/1.1970340.

Wang, F.-X. Efficient removal of emerging organic contaminants via photo-Fenton process over micron-sized Fe-MOF sheet / F.-X. Wang, Ch-Ch. Wang, X. Du, Y. Li, F. Wang, P. Wang // J. Chem. Eng. – 2022. – V. 429. – P. 132495. DOI: 10.1016/j.cej.2021.132495.

49. Barman, R.K. Structure and properties of tetraaquabis(hydrogenmaleato)iron(II) / R.K.
Barman, R. Chakrabarty, B.K. Das // Polyhedron. – 2002. – V. 21. – № 12–13. – P. 1189–1195.
DOI: 10.1016/S0277-5387(02)01002-1.

50. Essghaier, B. Structural, physicochemical characterization and antimicrobial activities of a new Tetraaqua bismaleato Iron(II) complex / B. Essghaier, J. Abdelhak, A. Naouar, N. Toukebri, M.F. Zid, N. Sadfi-Zouaoui // J. Chem. Sci. – 2015. – V. 127. – № 12. – P. 2261–2268. DOI: 10.1007/s12039-015-0990-z.

51. Ruggiero, M.T. The crucial role of water in shaping low-barrier hydrogen bonds / M.T. Ruggiero, T.M. Korter // Phys. Chem. Chem. Phys. – 2016. – V. 18. – P. 5521–5528. DOI: 10.1039/C5CP07760E.

52. Vukotic, V.N. Building hydrogen-bonded networks from metal complexes containing the heterotopic (N or O) ligand 4,4'-bipyridine-N-monoxide / V.N. Vukotic, S.J. Loeb // Supramol. Chem. – 2015. – V. 28. – № 1–2. – P. 151–160. DOI: 10.1080/10610278.2015.1115865.

53. Serre, C. A Route to the Synthesis of Trivalent Transition-Metal Porous Carboxylates with Trimeric Secondary Building Units / C. Serre, F. Millange, S. Surble, G. Ferey // Angew. Chem. Int. Ed. – 2004. – V. 43. – № 46. – P. 6285–6289. DOI: 10.1002/anie.200454250.

54. Mellot-Draznieks, C. Very Large Swelling in Hybrid Frameworks: A Combined Computational and Powder Diffraction Study / C. Mellot-Draznieks, C. Serre, S. Surble, N. Audebrand, G. Ferey // J. Am. Chem. Soc. – 2005. – V. 127. – № 46. – P. 16273–16278. DOI: 10.1021/ja054900x.

55. Serre, C. Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks / C. Serre, C. Mellot-Draznieks, S. Surble, N. Audebrand, Y. Filinchuk, G. Ferey // Science. – 2007. – V. 315. – № 5820. – P. 1828–1831. DOI: 10.1126/science.1137975.

56. Du, C.-J. Diaquabis(5-carboxy-1*H*-imidazole-4-carboxylato-*κ*²*N*³,*O*⁴)iron(II) / C.-J. Du, X.-H. Song, L-S. Wang, C.-L. Du // Acta Cryst. – 2011. – V. E67. – P. m997. DOI: 10.1107/S1600536811024779.

57. Ohshima, E. Triclinic modification of di-aqua-bis-(5-carboxy-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4)iron(II) / E. Ohshima, K. Yoshida, K. Sugiyama, H. Uekusa // Acta Cryst. E. - 2012. - V. 68. - No 8. - P. m1093-m1094. DOI: 10.1107/S1600536812031753.

Jin, J. Preparation and surface photoelectric properties of Fe(II/III) complexes / J. Jin, X.-T. Xu, D. Li, X. Han, L. Li, Y.-X. Chi, S.-Y. Niu, G.-N. Zhang // Solid State Sci. – 2013. – V. 19. – P. 73–79. DOI: 10.1016/j.solidstatesciences.2013.02.010.

59. Xu, Q.-Q. Robust nickel, manganese, and iron imidazole carboxylic acid catalysts for efficient visible-light driven reduction of CO₂ to CO / Q.-Q. Xu, R. Liu, W.-H. Mu, R. Chen, B. Huang, Z. Yang, J.-F. Kou // Inorg. Chem. Comm. – 2020. – V. 122. – P. 108269. DOI: 10.1016/j.inoche.2020.108269.

60. Ji, E-Yu. Crystal structure of [diaquabis(4-carboxy-2-ethyl-1H-imidazole-5-carboxylato-) k^2N^3 ,O⁴)iron(II)]–N,N-dimethylformamide (1:2), Fe(C₇H₇N₂O₄)₂(H₂O)₂·2C₃H₇NO / E-Yu Ji, H.-L. Chen // Z. fur Krist. - New Cryst. Struct. - 2011. - V. 226. - P. 431–432. DOI: 10.1524/ncrs.2011.0192.

61. Liu, W. *trans*-Di-aqua-bis-[5-carboxy-2-(3-pyridyl)-1*H*-imidazole-4-carboxylatoκ²N³,O⁴]iron(II) / W. Liu, G. Zhang, X. Li, B.-L. Wu, H.-Y. Zhang // Acta Cryst. E. – 2009. – V. 65. – № 8. – P. m938–m939. DOI: 10.1107/S1600536809027457.

62. Li, X. *trans*-Di-aqua-bis-[5-carboxy-4-carboxylato-2-(4-pyridinio)-1*H*-imidazol-1-idoκ²N³,O⁴]iron(II) / X. Li, W. Liu, B.-L. Wu, H.-Y. Zhang // Acta Cryst. E. – 2009. – V. 65. – №
7. – P. m820–m821. DOI: 10.1107/S160053680902337X.

63. Wei, H.-W. Field-induced slow relaxation of magnetization in a distorted octahedral mononuclear high-spin Co(II) complex / H.-W. Wei, Q.-F. Yang, X.-Y. Lai, X.-Y. Lai, X.-Z. Wang, T.-L. Yang, Q. Hou, X.-Y. Liu // CrystEngComm. – 2018. – V. 20. – P. 962–968. DOI: 10.1039/C7CE01981E.

64. Lu, W.-G. Achiral and Chiral Coordination Polymers Containing Helical Chains: The Chirality Transfer Between Helical Chains / W.-G. Lu, J.-Z. Gu, L. Jiang, M.-Y. Tan, T.-B. Lu // Cryst. Growth. Des. – 2008. – V. 8. – № 1. – P. 192–199. DOI: 10.1021/cg060778h.

65. Zheng, S.-R. The construction of coordination networks based on imidazole-based dicarboxylate ligand containing hydroxymethyl group / S.-R. Zheng, S.-L. Cai, M. Pan, J. Fan, T.-T. Xiao, W.-G. Zhang // CrystEngComm. – 2011. – V. 13. – P. 883–888. DOI: 10.1039/C0CE00369G.

66. Stein, I. [M^{II}(Py)₂(H₂O)_n(ADC)_{2/2}] mit M^{II} = Fe, Co, Ni (n = 2) und M^{II} = Cu (n = 1): Vier neue Koordinationspolymere mit dem Acetylendicarboxylat-Dianion (ADC²⁻) als verbrückendem Liganden / I. Stein, M. Speldrich, H. Schilder, H. Lueken, U. Ruschewitz // Z. Anorg. Allg. Chem. – 2007. – V. 633. – № 9. – P. 1382–1390. DOI: 10.1002/zaac.200700133. 67. Beghidja, A. An approach to chiral magnets using α-hydroxycarboxylates / A. Beghidja,

G. Rogez, P. Rabu, R. Welter, M. Drillon // J. Mat. Chem. – 2006. – V. 16. – P. 2715–2728. DOI: 10.1039/B603014A.

Beghidja, A. Synthesis, structure and magnetic properties of chiral and nonchiral transition-metal malates / A. Beghidja, P. Rabu, G. Rogez, R. Welter // Chemistry. – 2006. – V.
12. – № 29. – P. 7627–7638. DOI: 10.1002/chem.200600001.

69. Zhu, L. Poly[[diaqua-μ₃-malonato-iron(II)] monohydrate] / L. Zhu, F. Sun // Acta Cryst.
- 2007. - V. E63. - № 12. - P. m2966. DOI: 10.1107/S1600536807055377.

2006. – V. 359. – № 8. – P. 2495–2500. DOI: 10.1016/j.ica.2006.02.043.

71. Ivanov, M.A. The structure of the iron(III) complex with sodium tartrate (FeTNa) / M.A.
Ivanov, A.L. Kosoy // Acta. Cryst. – 1975. – V. B31. – P. 2843–2848.
DOI: 10.1107/S0567740875009028.

72. Zhang, Z.-M. Enantiomerically Pure Chiral {Fe₂₈} Wheels / Z.-M. Zhang, Y.-G. Li, S. Yao, E.-B. Wang, Y.-H. Wang, R. Clerac // Angew. Chem. Int. Ed. – 2009. – V. 48. – № 9. – P. 1581–1584. DOI: 10.1002/anie.200805827.

73. Zhang, Z.-M. Protein-Sized Chiral Fe₁₆₈ Cages with NbO-Type Topology / Z.-M. Zhang,
S. Yao, Y.-G. Li, R. Clerac, Y. Lu, Z.-M. Su, E.-B. Wang // J. Am. Chem. Soc. – 2009. – V.
131. – № 41. – P. 14600–14601. DOI: 10.1021/ja903776h.

Yin, P. Chiral recognition and selection during the self-assembly process of proteinmimic macroanions / P. Yin, Z.-M. Zhang, H. Lv, T. Li, F. Haso, L. Hu, B. Zhang, J. Bacsa, Y. Wei, Y. Gao, Y. Hou, Y.-G. Li, C.L. Hill, E.-B. Wang, T. Liu // Nat. Commun. – 2015. – V. 6. – P. 6475. DOI: 10.1038/ncomms7475.

75. Kim, Y.J. A Novel 3-D Network of Fe(II) Glutarate: 2-D Honeycomb-type Edge-shared FeO₆ Layers and Isolated Interlayer FeO₆ Octahedra / Y.J. Kim, Y.J. Park, D.-Y. Jung, S. Oh, D.S. Kim, J.C. Sur // Chem. Lett. – 2004. – V. 33. – N_{2} 3. – P. 230–231. DOI: 10.1246/cl.2004.230.

76. Kim, Y.J. Two-dimensional carboxylate bridged network of europium(III)–transition metal(II) glutarate compounds / Y.J. Kim, Y.J. Park, D.-Y. Jung // Dalton Trans. – 2005. – P. 2603–2608. DOI: 10.1039/B505384F.

77. Sessler, J.L. Structure and properties of a tetranuclear iron(III) cage complex. A model for hemerythrin / J.L. Sessler, J.W. Sibert, V. Lynch, J.T. Markert, C.L. Wooten // Inorg. Chem. – 1993. – V. 32. – № 5. – P. 621–626. DOI: 10.1021/ic00057a022.

78. Zhang, J. Three-Dimensional Homochiral Transition-Metal Camphorate Architectures Directed by a Flexible Auxiliary Ligand / J. Zhang, E. Chew, S. Chen, J.T.H. Pham, X. Bu // Inorg. Chem. – 2008. – V. 47. – № 9. – P. 3495–2497. DOI: 10.1021/ic800195u.

Kim, Y. J. Synthesis of a New Iron(II) Adipate with layered Inorganic Framework / Y. J.
Kim, D. Y. Jeong // Bull. Kor. Chem. Soc. – 2000. – V. 21. – № 6. – P. 656–658.

Wang, G.-M. Synthesis and magnetic properties of a new hexanuclear iron(III) compound
/ G.-M. Wang, R.-J. Wei, L.-L. Hu, X.-J. Sun, R.-B. Huang, L.-S. Zheng, J. Tao // Inorg. Chem.
Comm. – 2009. – V. 12. – № 7. – P. 622–624. DOI: 10.1016/j.inoche.2009.05.005.

81. Jiang, S. Recent research progress and challenges of MIL-88(Fe) from synthesis to advanced oxidation process / S. Jiang, Z. Zhao, J. Chen, Y. Yang, C. Ding, Y. Yang, Y. Wang, N. Liu, L. Wang, X. Zhang // Surf. Interfaces. – 2022. – V. 30. – P. 101843. DOI: 10.1016/j.surfin.2022.101843.

82. Агафонов, М.А. Металл-органические координационные полимеры в России: от синтеза и структуры к функциональным свойствам и материалам / М.А. Агафонов, Е.В. Александров, Н.А. Артюхова, Г.Э. Бекмухамедов, В.А. Блатов, В.В. Бутова, Я.М. Гайфулин, А.А. Гарибян, З.Н. Гафуров, Ю.Г. Горбунова, Л.Г. Гордеева, М.С. Груздев, А.Н. Гусев, Г.Л. Денисов, Д.Н. Дыбцев, Ю.Ю. Енакиева, А.А. Кагилев, А.О. Кантюков, М.А. Кискин, К.А. Коваленко, А.М. Колкер, Д.И. Колоколов, Ю.М. Литвинова, А.А. Лысова, Н.В. Максимчук, Ю.В. Миронов, Ю.В. Нелюбина, В.В. Новиков, В.И. Овчаренко, А.В. Пискунов, Д.М. Полюхов, В.А. Поляков, В.Г. Пономарева, А.С. Порываев, Г.В. Романенко, А.В. Солдатов, М.В. Соловьева, А.Г. Степанов, И.В. Терехова, О.Ю. Трофимова, В.П. Федин, М.В. Федин, О.А. Холдеева, А.Ю. Цивадзе, У.В. Червонова, А.И. Черевко, В.Ф. Шульгин, Е.С. Шутова, Д.Г. Яхваров // Журн. структ. хим. – 2022. – Т. 63. – № 5. – С. 535. DOI: 10.26902/JSC_id93211.

83. Zheng, Y.-Z. Spin-Frustrated Complex, $[Fe^{II}Fe^{III}(trans-1,4-cyclohexanedicarboxylate)_{1.5}]_{\infty}$: Interplay between Single-Chain Magnetic Behavior and

Magnetic Ordering / Y.-Z. Zheng, W. Xue, W.-X. Zhang, M.-L. Tong, X.-M. Chen, F. Grandjean, G.J. Long, S.-W. Ng, P. Panissod, M. Drillon // Inorg. Chem. – 2009. – V. 49. – № 5. – P. 2028–2042. DOI: 10.1021/ic8019155.

84. Zheng, Y.-Z. Incorporation of spin-5/2 chain into 2D network with conformational pure *e,a-cis*-cyclohexane-1,4-dicarboxylato linker / Y.-Z. Zheng, X.-M. Chen // Dalton Trans. – 2012.
– V. 41. – P. 11989–11991. DOI: 10.1039/C2DT31613G.

85. Smolobochkin, A.V. Tandem intramolecular cyclisation/1,3-aryl shift in N-(4,4-diethoxybutyl)-1-arylmethanimines (Kazan reaction): synthesis of 3-benzylidene-1-pyrrolines / A.V. Smolobochkin, A.S. Gazizov, A.S. Melyashova, J.K. Voronina, A.G. Strelnik, S.Z. Vatsadze, A.R. Burilov, M.A. Pudovik, O.A. Fedorova, O.G. Sinyashin // RSC Advances. – 2017. – V. 7. – P. 50955–50960. DOI: 10.1039/C7RA11216E.

Brown, I. D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model / I.
D. Brown. – New York : Oxford University Press, 2002. – 278 p.

87. Бацанов С.С. // Журн. неорган. химии. – 1991. – Т. 36. – С. 3015/

88. O'Sullivan, C. Crystal structures, electronic properties and structural pathways of thirty [Cu(bipy)₂X][Y] complexes, where X = Cl⁻, Br⁻ or I⁻ / C. O'Sullivan, G. Murphy, B. Murphy, B. Hathaway // J. Chem. Soc., Dalton Trans. – 1999. – P. 1835–1844. DOI: 10.1039/A810020I.
89. E. Hansson. Structural Studies on the Rare Earth Carboxylates. 18. The Crystal and Molecular Structure of Hexa-aquo Tris-malonato Di-neodymium(III) / E. Hansson // Acta Chem. Scand. – 1973. – V. 27. – P. 2441–2454. DOI: 10.3891/acta.chem.scand.27-2813.

90. F.S. Delgado. Crystal growth and structural remarks on malonate-based lanthanide coordination polymers / F.S. Delgado, P. Lorenzo-Luis, J. Pasan, L. Canadillas-Delgado, O. Fabelo, M. Hernandez-Molina, A.D. Lozano-Gorrin, F. Lloret, M. Julve, C. Ruiz-Perez // CrystEngComm. –2016. – V. 18. – № 40. – P. 7831–7842. DOI: 10.1039/C6CE01360K.

91. Ракитин, Ю.В. Современная магнетохимия / Ю.В. Ракитин, В.Т. Калинников – СПб.
: Наука, 1994. – 276 с.

92. N.F. Chilton. PHI: a powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes / N.F. Chilton, R.P. Anderson, L.D. Turner, A. Soncini, K.S. Murray // J. Comput. Chem. – 2013. – V. 24. – № 13. – P. 1164–1175. DOI: 10.1002/jcc.23234.

93. Efimov, N.N. Dynamic Magnetic Susceptibility Method in Studies of Coordination
Compounds / N.N. Efimov, K.A. Babeshkin, A.V. Rotov // Russ. J. Coord. Chem. – 2024. – V.
50. – № 6. – Р. 363–373. DOI: 10.1134/S1070328424600141.

94. Alvarez, S. Continuous symmetry maps and shape classification. The case of sixcoordinated metal compounds / S. Alvarez, D. Avnir, M. Llunell, M. Pinsky // New J. Chem. – 2002. – V. 26. – P. 996–1009. DOI: 10.1039/B200641N.

ПРИЛОЖЕНИЕ А

Таблица A1 – Валентность ионов железа, рассчитанная по методу сумм валентностей связей

Соединение	Валентность иона Fe ³⁺ , <i>V</i>	Соединение	Валентность иона Fe ³⁺ , <i>V</i>	Соединение	Валентность иона Fe ³⁺ , V
1.2	3.17	12.2	3.19	23.2	3.25; 3.29; 3.25
2.2	3.14	13.2	3.18	24.2	3.28; 3.28
3.2	3.13	14.2	3.10	25.2	3.14; 3.17
4.2	3.20	15.2	3.14	26.2	3.23
5.2	3.17; 3.18*	16.2	3.25	27.2	3.24; 3.25; 3.23; 3.28; 3.28
6.2	3.16	17.2	3.17	28.2	3.13
7.2	3.16	18.2	3.23	29.2	3.11
8.2	3.18	19.2	3.17; 3.07	30.2	3.13
9.2	3.16	20.2	3.24; 3.24	31.2	3.17; 3.20
10.2	3.19	21.2	3.26		
11.2	3.18	22.2	3.29		

Расчет валентности ионов железа(III) проводился по формуле (1):

$$V_i = \sum S_{ij} = \sum \exp[(R_0 - r_{ij})/b]$$
 (1), где

 V_i – валентность атома *i*, S_{ij} и r_{ij} – валентность и длина связи между атомами *i* и *j*, R_0 – эмпирически определенное расстояние между данной парой атомов, *b* – универсальный параметр. Для атомов железа(III) параметры R_0 и *b* равны 1.759 Å и 0.37, соответственно.

* значения V были рассчитаны и указаны для всех кристаллографически неэквивалентных ионов железа(III).

ПРИЛОЖЕНИЕ Б

Рисунок Б1 – Теоретическая (красная линия) и экспериментальная (синяя линия) дифрактограмма образца соединения 10.2

Рисунок Б2 – Теоретическая (красная линия) и экспериментальная (синяя линия) дифрактограмма образца соединения 16.2

Рисунок Б3 – Теоретическая (красная линия) и экспериментальная (синяя линия) дифрактограмма образца соединения 17.2

Рисунок Б4 – Теоретическая (красная линия) и экспериментальная (синяя линия) дифрактограмма образца соединения 22.2

Рисунок Б5 – Теоретическая (красная линия) и экспериментальная (синяя линия) дифрактограмма образца соединения 25.2

Рисунок Б6 – Теоретическая (красная линия) и экспериментальная (синяя линия) дифрактограмма образца соединения 28.2

Рисунок Б7 – Теоретическая (красная линия) и экспериментальная (синяя линия) дифрактограмма образца соединения 29.2

Рисунок Б8 – Теоретическая (красная линия) и экспериментальная (синяя линия) дифрактограмма образца соединения 30.2

ПРИЛОЖЕНИЕ В

Рисунок В1 – Полевая зависимость намагниченности М(Н) при 2, 4 и 6 К для соединения 10.2. Сплошные линии – теоретические кривые

Рисунок В2 – Полевая зависимость намагниченности М(Н) при 2, 4 и 6 К для соединения 16.2. Сплошные линии – теоретические кривые

Рисунок ВЗ – Полевая зависимость намагниченности М(H) при 2, 4 и 6 К для соединения 17.2

Рисунок В4 – Полевая зависимость намагниченности М(Н) при 2, 4 и 6 К для соединения 22.2. Сплошные линии – теоретические кривые

Рисунок В5 – Полевая зависимость намагниченности М(H) при 2, 4 и 6 К для соединения 25.2. Сплошные линии – теоретические кривые